Carma-platform v4.2.0
CARMA Platform is built on robot operating system (ROS) and utilizes open source software (OSS) that enables Cooperative Driving Automation (CDA) features to allow Automated Driving Systems to interact and cooperate with infrastructure and other vehicles through communication.
object_detection_tracking_worker.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2019-2021 LEIDOS.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
17#include <tf2_ros/transform_listener.h>
18#include <tf2_geometry_msgs/tf2_geometry_msgs.hpp>
19#include <tf2/LinearMath/Quaternion.h>
20#include <tf2/transform_datatypes.h>
21#include <tf2_ros/transform_listener.h>
22#include <tf2_eigen/tf2_eigen.h>
23#include "covariance_helper.h"
24
25namespace object
26{
27
28ObjectDetectionTrackingWorker::ObjectDetectionTrackingWorker(PublishObjectCallback obj_pub, TransformLookupCallback tf_lookup, rclcpp::node_interfaces::NodeLoggingInterface::SharedPtr logger)
29 : obj_pub_(obj_pub), tf_lookup_(tf_lookup), logger_(logger) {}
30
31bool ObjectDetectionTrackingWorker::isClass(const autoware_auto_msgs::msg::TrackedObject& obj, uint8_t class_id) {
32
33 return obj.classification.end() != std::find_if(obj.classification.begin(), obj.classification.end(),
34 [&class_id](auto o){ return o.classification == class_id; }
35 );
36
37}
38
39void ObjectDetectionTrackingWorker::detectedObjectCallback(autoware_auto_msgs::msg::TrackedObjects::UniquePtr obj_array)
40{
41
42 carma_perception_msgs::msg::ExternalObjectList msg;
43 msg.header = obj_array->header;
44 msg.header.frame_id = map_frame_;
45
46
47 auto transform = tf_lookup_(map_frame_, obj_array->header.frame_id, obj_array->header.stamp);
48
49 if (!transform) {
50 RCLCPP_WARN_STREAM(logger_->get_logger(), "Ignoring fix message: Could not locate static transforms exception.");
51 return;
52 }
53
54 geometry_msgs::msg::TransformStamped object_frame_tf = transform.get();
55
56 for (size_t i = 0; i < obj_array->objects.size(); i++)
57 {
58 carma_perception_msgs::msg::ExternalObject obj;
59
60 // Header contains the frame rest of the fields will use
61 obj.header = msg.header;
62
63 // Presence vector message is used to describe objects coming from potentially
64 // different sources. The presence vector is used to determine what items are set
65 // by the producer
66 obj.presence_vector = obj.presence_vector | obj.ID_PRESENCE_VECTOR;
67 obj.presence_vector = obj.presence_vector | obj.POSE_PRESENCE_VECTOR;
68 obj.presence_vector = obj.presence_vector | obj.VELOCITY_PRESENCE_VECTOR;
69 obj.presence_vector = obj.presence_vector | obj.SIZE_PRESENCE_VECTOR;
70 obj.presence_vector = obj.presence_vector | obj.OBJECT_TYPE_PRESENCE_VECTOR;
71 obj.presence_vector = obj.presence_vector | obj.DYNAMIC_OBJ_PRESENCE;
72 obj.presence_vector = obj.presence_vector | obj.CONFIDENCE_PRESENCE_VECTOR;
73
74 // Object id. Matching ids on a topic should refer to the same object within some time period, expanded
75 obj.id = obj_array->objects[i].object_id;
76
77 // Pose of the object within the frame specified in header
78 geometry_msgs::msg::PoseStamped input_object_pose;
79 input_object_pose.header = obj_array->header;
80 input_object_pose.pose.position = obj_array->objects[i].kinematics.centroid_position;
81 input_object_pose.pose.orientation = obj_array->objects[i].kinematics.orientation;
82
83 geometry_msgs::msg::PoseStamped output_pose;
84 // Transform the object input our map frame
85 tf2::doTransform(input_object_pose, output_pose, object_frame_tf);
86
87 obj.pose.pose = output_pose.pose;
88
89 // Coming from legacy code, manually copying over the position covariance
90 // Variable names used here are row, column so row major order
91 auto xx = obj_array->objects[i].kinematics.position_covariance[0];
92 auto xy = obj_array->objects[i].kinematics.position_covariance[1];
93 auto xz = obj_array->objects[i].kinematics.position_covariance[2];
94 auto yx = obj_array->objects[i].kinematics.position_covariance[3];
95 auto yy = obj_array->objects[i].kinematics.position_covariance[4];
96 auto yz = obj_array->objects[i].kinematics.position_covariance[5];
97 auto zx = obj_array->objects[i].kinematics.position_covariance[6];
98 auto zy = obj_array->objects[i].kinematics.position_covariance[7];
99 auto zz = obj_array->objects[i].kinematics.position_covariance[8];
100
101 // This matrix represents the covariance of the object before transformation
102 std::array<double, 36> input_covariance = {
103 xx, xy, xz, 0, 0, 0,
104 yx, yy, yz, 0, 0, 0,
105 zx, zy, zz, 0, 0, 0,
106 0, 0, 0, 1, 0, 0, // Since no covariance for the orientation is provided we will assume an identity relationship (1s on the diagonal)
107 0, 0, 0, 0, 1, 0, // TODO when autoware suplies this information we should update this to reflect the new covariance
108 0, 0, 0, 0, 0, 1
109 };
110
111 // Transform the covariance matrix
112 tf2::Transform covariance_transform;
113 tf2::fromMsg(object_frame_tf.transform, covariance_transform);
114 obj.pose.covariance = covariance_helper::transformCovariance(input_covariance, covariance_transform);
115
116 // Store the object ovarall confidence
117 obj.confidence = obj_array->objects[i].existence_probability;
118
119 // Average velocity of the object within the frame specified in header
120 obj.velocity = obj_array->objects[i].kinematics.twist;
121
122 // The size of the object aligned along the axis of the object described by the orientation in pose
123 // Dimensions are specified in meters
124 // Autoware provides a set of 2d bounding boxes and supports articulated shapes.
125 // The loop below finds the overall bounding box to ensure information is not lost
126
127 double minX = std::numeric_limits<double>::max();
128 double maxX = std::numeric_limits<double>::lowest();
129 double minY = std::numeric_limits<double>::max();
130 double maxY = std::numeric_limits<double>::lowest();
131 double maxHeight = std::numeric_limits<double>::lowest();
132
133 for(auto shape : obj_array->objects[i].shape) {
134 for (auto point : shape.polygon.points) {
135
136 if (point.x > maxX)
137 maxX = point.x;
138
139 if (point.x < minX)
140 minX = point.x;
141
142 if (point.y > maxY)
143 maxY = point.y;
144
145 if (point.y < minY)
146 minY = point.y;
147 }
148 if (shape.height > maxHeight)
149 maxHeight = shape.height;
150 }
151
152 double dX = maxX - minX;
153 double dY = maxY - minY;
154
155 obj.size.x = dX / 2.0; // Shape in carma is defined by the half delta from the centroid
156 obj.size.y = dY / 2.0;
157
158 // Height provided by autoware is overall height divide by 2 for delta from centroid
159 obj.size.z = maxHeight / 2.0;
160
161 // Update the object type and generate predictions using CV or CTRV vehicle models.
162 // If the object is a bicycle or motor vehicle use CTRV otherwise use CV.
163
164 if (isClass(obj_array->objects[i], autoware_auto_msgs::msg::ObjectClassification::MOTORCYCLE))
165 {
166 obj.object_type = obj.MOTORCYCLE;
167 }
168 else if (isClass(obj_array->objects[i], autoware_auto_msgs::msg::ObjectClassification::BICYCLE))
169 {
170 obj.object_type = obj.MOTORCYCLE; // Currently external object cannot represent bicycles
171 }
172 else if (isClass(obj_array->objects[i], autoware_auto_msgs::msg::ObjectClassification::CAR))
173 {
174 obj.object_type = obj.SMALL_VEHICLE;
175 }
176 else if (isClass(obj_array->objects[i], autoware_auto_msgs::msg::ObjectClassification::TRUCK))
177 {
178 obj.object_type = obj.LARGE_VEHICLE;
179 }
180 else if (isClass(obj_array->objects[i], autoware_auto_msgs::msg::ObjectClassification::TRAILER))
181 {
182 obj.object_type = obj.LARGE_VEHICLE; // Currently external object cannot represent trailers
183 }
184 else if (isClass(obj_array->objects[i], autoware_auto_msgs::msg::ObjectClassification::PEDESTRIAN))
185 {
186 obj.object_type = obj.PEDESTRIAN;
187 }
188 else
189 {
190 obj.object_type = obj.UNKNOWN;
191 }
192
193 // Binary value to show if the object is static or dynamic (1: dynamic, 0: static)
194
195 if ((fabs(obj.velocity.twist.linear.x || obj.velocity.twist.linear.y || obj.velocity.twist.linear.z)) > 0.75)
196 {
197 obj.dynamic_obj = 1;
198 }
199 else
200 {
201 obj.dynamic_obj = 0;
202 }
203
204 msg.objects.emplace_back(obj);
205 }
206
207
208
209 obj_pub_(msg);
210}
211
213{
214 map_frame_ = map_frame;
215}
216
217
218} // namespace object
ObjectDetectionTrackingWorker(PublishObjectCallback obj_pub, TransformLookupCallback tf_lookup, rclcpp::node_interfaces::NodeLoggingInterface::SharedPtr logger)
Constructor.
bool isClass(const autoware_auto_msgs::msg::TrackedObject &obj, uint8_t class_id)
Helper method to check if the provided tracked object has the provided class type.
void detectedObjectCallback(autoware_auto_msgs::msg::TrackedObjects::UniquePtr msg)
detectedObjectCallback populates detected object along with its velocity,yaw, yaw_rate and static/dyn...
rclcpp::node_interfaces::NodeLoggingInterface::SharedPtr logger_
std::function< void(const carma_perception_msgs::msg::ExternalObjectList &)> PublishObjectCallback
std::function< boost::optional< geometry_msgs::msg::TransformStamped >(const std::string &, const std::string &, const rclcpp::Time &stamp)> TransformLookupCallback
geometry_msgs::msg::PoseWithCovariance::_covariance_type transformCovariance(const geometry_msgs::msg::PoseWithCovariance::_covariance_type &cov_in, const tf2::Transform &transform)
Transform the covariance matrix of a PoseWithCovariance message to a new frame.