Carma-platform v4.2.0
CARMA Platform is built on robot operating system (ROS) and utilizes open source software (OSS) that enables Cooperative Driving Automation (CDA) features to allow Automated Driving Systems to interact and cooperate with infrastructure and other vehicles through communication.
yield_plugin.cpp
Go to the documentation of this file.
1/*
2 * Copyright (C) 2022 LEIDOS.
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
5 * use this file except in compliance with the License. You may obtain a copy of
6 * the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
12 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
13 * License for the specific language governing permissions and limitations under
14 * the License.
15 */
16
17#include <rclcpp/rclcpp.hpp>
18#include <string>
19#include <algorithm>
20#include <memory>
21#include <limits>
22#include <boost/uuid/uuid_generators.hpp>
23#include <boost/uuid/uuid_io.hpp>
24#include <lanelet2_core/geometry/Point.h>
25#include <trajectory_utils/trajectory_utils.hpp>
26#include <trajectory_utils/conversions/conversions.hpp>
27#include <sstream>
28#include <carma_ros2_utils/carma_lifecycle_node.hpp>
29#include <Eigen/Core>
30#include <Eigen/Geometry>
31#include <Eigen/LU>
32#include <Eigen/SVD>
34#include <carma_v2x_msgs/msg/location_ecef.hpp>
35#include <carma_v2x_msgs/msg/trajectory.hpp>
36#include <carma_v2x_msgs/msg/plan_type.hpp>
38#include <future>
39
40using oss = std::ostringstream;
41constexpr auto EPSILON {0.01}; //small value to compare doubles
42
43namespace yield_plugin
44{
45 YieldPlugin::YieldPlugin(std::shared_ptr<carma_ros2_utils::CarmaLifecycleNode> nh, carma_wm::WorldModelConstPtr wm, YieldPluginConfig config,
46 MobilityResponseCB mobility_response_publisher,
47 LaneChangeStatusCB lc_status_publisher)
48 : nh_(nh), wm_(wm), config_(config),mobility_response_publisher_(mobility_response_publisher), lc_status_publisher_(lc_status_publisher)
49 {
50
51 }
52
53 double get_trajectory_end_time(const carma_planning_msgs::msg::TrajectoryPlan& trajectory)
54 {
55 return rclcpp::Time(trajectory.trajectory_points.back().target_time).seconds();
56 }
57
58 double get_trajectory_start_time(const carma_planning_msgs::msg::TrajectoryPlan& trajectory)
59 {
60 return rclcpp::Time(trajectory.trajectory_points.front().target_time).seconds();
61 }
62
63 double get_trajectory_duration(const carma_planning_msgs::msg::TrajectoryPlan& trajectory)
64 {
65 return fabs(get_trajectory_end_time(trajectory) - get_trajectory_start_time(trajectory));
66 }
67
68 double get_trajectory_duration(const std::vector<carma_perception_msgs::msg::PredictedState>& trajectory)
69 {
70 return (rclcpp::Time(trajectory.back().header.stamp) - rclcpp::Time(trajectory.front().header.stamp)).seconds();
71 }
72
73 std::vector<std::pair<int, lanelet::BasicPoint2d>> YieldPlugin::detect_trajectories_intersection(std::vector<lanelet::BasicPoint2d> self_trajectory, std::vector<lanelet::BasicPoint2d> incoming_trajectory) const
74 {
75 std::vector<std::pair<int, lanelet::BasicPoint2d>> intersection_points;
76 boost::geometry::model::linestring<lanelet::BasicPoint2d> self_traj;
77 for (auto tpp:self_trajectory)
78 {
79 boost::geometry::append(self_traj, tpp);
80 }
81 // distance to consider trajectories colliding (chosen based on lane width and vehicle size)
82 for (size_t i=0; i<incoming_trajectory.size(); i++)
83 {
84 double res = boost::geometry::distance(incoming_trajectory.at(i), self_traj);
85
87 {
88 intersection_points.push_back(std::make_pair(i, incoming_trajectory.at(i)));
89 }
90 }
91 return intersection_points;
92 }
93
94 std::vector<lanelet::BasicPoint2d> YieldPlugin::convert_eceftrajectory_to_mappoints(const carma_v2x_msgs::msg::Trajectory& ecef_trajectory) const
95 {
96 carma_planning_msgs::msg::TrajectoryPlan trajectory_plan;
97 std::vector<lanelet::BasicPoint2d> map_points;
98
99 lanelet::BasicPoint2d first_point = ecef_to_map_point(ecef_trajectory.location);
100
101 map_points.push_back(first_point);
102 auto curr_point = ecef_trajectory.location;
103
104 for (size_t i = 0; i<ecef_trajectory.offsets.size(); i++)
105 {
106 lanelet::BasicPoint2d offset_point;
107 curr_point.ecef_x += ecef_trajectory.offsets.at(i).offset_x;
108 curr_point.ecef_y += ecef_trajectory.offsets.at(i).offset_y;
109 curr_point.ecef_z += ecef_trajectory.offsets.at(i).offset_z;
110
111 offset_point = ecef_to_map_point(curr_point);
112
113 map_points.push_back(offset_point);
114 }
115
116 return map_points;
117 }
118
119 lanelet::BasicPoint2d YieldPlugin::ecef_to_map_point(const carma_v2x_msgs::msg::LocationECEF& ecef_point) const
120 {
121
122 if (!map_projector_) {
123 throw std::invalid_argument("No map projector available for ecef conversion");
124 }
125
126 lanelet::BasicPoint3d map_point = map_projector_->projectECEF( { static_cast<double>(ecef_point.ecef_x)/100.0, static_cast<double>(ecef_point.ecef_y)/100.0, static_cast<double>(ecef_point.ecef_z)/100.0 } , 1);
127
128 return lanelet::traits::to2D(map_point);
129 }
130
131
132
133 carma_v2x_msgs::msg::MobilityResponse YieldPlugin::compose_mobility_response(const std::string& resp_recipient_id, const std::string& req_plan_id, bool response) const
134 {
135 carma_v2x_msgs::msg::MobilityResponse out_mobility_response;
136 out_mobility_response.m_header.sender_id = config_.vehicle_id;
137 out_mobility_response.m_header.recipient_id = resp_recipient_id;
138 out_mobility_response.m_header.sender_bsm_id = host_bsm_id_;
139 out_mobility_response.m_header.plan_id = req_plan_id;
140 out_mobility_response.m_header.timestamp = nh_->now().seconds()*1000;
141
142
144 {
145 out_mobility_response.is_accepted = true;
146 }
147 else out_mobility_response.is_accepted = false;
148
149 return out_mobility_response;
150 }
151
152
153 void YieldPlugin::mobilityrequest_cb(const carma_v2x_msgs::msg::MobilityRequest::UniquePtr msg)
154 {
155 carma_v2x_msgs::msg::MobilityRequest incoming_request = *msg;
156 carma_planning_msgs::msg::LaneChangeStatus lc_status_msg;
157 if (incoming_request.strategy == "carma/cooperative-lane-change")
158 {
159 if (!map_projector_) {
160 RCLCPP_ERROR(nh_->get_logger(),"Cannot process mobility request as map projection is not yet set!");
161 return;
162 }
163 if (incoming_request.plan_type.type == carma_v2x_msgs::msg::PlanType::CHANGE_LANE_LEFT || incoming_request.plan_type.type == carma_v2x_msgs::msg::PlanType::CHANGE_LANE_RIGHT)
164 {
165 RCLCPP_DEBUG(nh_->get_logger(),"Cooperative Lane Change Request Received");
166 lc_status_msg.status = carma_planning_msgs::msg::LaneChangeStatus::REQUEST_RECEIVED;
167 lc_status_msg.description = "Received lane merge request";
168
169 if (incoming_request.m_header.recipient_id == config_.vehicle_id)
170 {
171 RCLCPP_DEBUG(nh_->get_logger(),"CLC Request correctly received");
172 }
173
174 // extract mobility header
175 std::string req_sender_id = incoming_request.m_header.sender_id;
176 std::string req_plan_id = incoming_request.m_header.plan_id;
177 // extract mobility request
178 carma_v2x_msgs::msg::LocationECEF ecef_location = incoming_request.location;
179 carma_v2x_msgs::msg::Trajectory incoming_trajectory = incoming_request.trajectory;
180 std::string req_strategy_params = incoming_request.strategy_params;
181 clc_urgency_ = incoming_request.urgency;
182 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"received urgency: " << clc_urgency_);
183
184 // Parse strategy parameters
185 using boost::property_tree::ptree;
186 ptree pt;
187 std::istringstream strstream(req_strategy_params);
188 boost::property_tree::json_parser::read_json(strstream, pt);
189 int req_traj_speed_full = pt.get<int>("s");
190 int req_traj_fractional = pt.get<int>("f");
191 int start_lanelet_id = pt.get<int>("sl");
192 int end_lanelet_id = pt.get<int>("el");
193 double req_traj_speed = static_cast<double>(req_traj_speed_full) + static_cast<double>(req_traj_fractional)/10.0;
194 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"req_traj_speed" << req_traj_speed);
195 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"start_lanelet_id" << start_lanelet_id);
196 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"end_lanelet_id" << end_lanelet_id);
197
198 std::vector<lanelet::BasicPoint2d> req_traj_plan = {};
199
200 req_traj_plan = convert_eceftrajectory_to_mappoints(incoming_trajectory);
201
202 double req_expiration_sec = static_cast<double>(incoming_request.expiration);
203 double current_time_sec = nh_->now().seconds();
204
205 bool response_to_clc_req = false;
206 // ensure there is enough time for the yield
207 double req_plan_time = req_expiration_sec - current_time_sec;
208 double req_timestamp = static_cast<double>(incoming_request.m_header.timestamp) / 1000.0 - current_time_sec;
209 set_incoming_request_info(req_traj_plan, req_traj_speed, req_plan_time, req_timestamp);
210
211
212 if (req_expiration_sec - current_time_sec >= config_.min_obj_avoidance_plan_time_in_s && cooperative_request_acceptable_)
213 {
215 lc_status_msg.status = carma_planning_msgs::msg::LaneChangeStatus::REQUEST_ACCEPTED;
216 lc_status_msg.description = "Accepted lane merge request";
217 response_to_clc_req = true;
218 RCLCPP_DEBUG(nh_->get_logger(),"CLC accepted");
219 }
220 else
221 {
222 lc_status_msg.status = carma_planning_msgs::msg::LaneChangeStatus::REQUEST_REJECTED;
223 lc_status_msg.description = "Rejected lane merge request";
224 response_to_clc_req = false;
225 RCLCPP_DEBUG(nh_->get_logger(),"CLC rejected");
226 }
227 carma_v2x_msgs::msg::MobilityResponse outgoing_response = compose_mobility_response(req_sender_id, req_plan_id, response_to_clc_req);
228 mobility_response_publisher_(outgoing_response);
229 lc_status_msg.status = carma_planning_msgs::msg::LaneChangeStatus::RESPONSE_SENT;
230 RCLCPP_DEBUG(nh_->get_logger(),"response sent");
231 }
232 }
233 lc_status_publisher_(lc_status_msg);
234
235 }
236
237 void YieldPlugin::set_incoming_request_info(std::vector <lanelet::BasicPoint2d> req_trajectory, double req_speed, double req_planning_time, double req_timestamp)
238 {
239 req_trajectory_points_ = req_trajectory;
240 req_target_speed_ = req_speed;
241 req_target_plan_time_ = req_planning_time;
242 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"req_target_plan_time_" << req_target_plan_time_);
243 req_timestamp_ = req_timestamp;
244 }
245
246 void YieldPlugin::bsm_cb(const carma_v2x_msgs::msg::BSM::UniquePtr msg)
247 {
248 carma_v2x_msgs::msg::BSMCoreData bsm_core_ = msg->core_data;
249 host_bsm_id_ = bsmIDtoString(bsm_core_);
250 }
251
253 carma_planning_msgs::srv::PlanTrajectory::Request::SharedPtr req,
254 carma_planning_msgs::srv::PlanTrajectory::Response::SharedPtr resp)
255{
256 RCLCPP_DEBUG(nh_->get_logger(),"Yield_plugin was called!");
257 if (req->initial_trajectory_plan.trajectory_points.size() < 2){
258 throw std::invalid_argument("Empty Trajectory received by Yield");
259 }
260 rclcpp::Clock system_clock(RCL_SYSTEM_TIME);
261 rclcpp::Time start_time = system_clock.now(); // Start timing the execution time for planning so it can be logged
262
263 carma_planning_msgs::msg::TrajectoryPlan original_trajectory = req->initial_trajectory_plan;
264 carma_planning_msgs::msg::TrajectoryPlan yield_trajectory;
265
266
267 double initial_velocity = req->vehicle_state.longitudinal_vel;
268 // If vehicle_state is stopped, non-zero velocity from the trajectory
269 // should be used. Otherwise, vehicle will not move.
270 if (initial_velocity < EPSILON)
271 {
272 initial_velocity = original_trajectory.initial_longitudinal_velocity;
273 }
274
275 // seperating cooperative yield with regular object detection for better performance.
277 {
278 RCLCPP_DEBUG(nh_->get_logger(),"Only consider high urgency clc");
280 {
281 RCLCPP_DEBUG(nh_->get_logger(),"Yield for CLC. We haven't received an updated negotiation this timestep");
282 yield_trajectory = update_traj_for_cooperative_behavior(original_trajectory, initial_velocity);
284 }
285 else
286 {
287 RCLCPP_DEBUG(nh_->get_logger(),"unreliable CLC communication, switching to object avoidance");
288 yield_trajectory = update_traj_for_object(original_trajectory, external_objects_, initial_velocity); // Compute the trajectory
289 }
290 }
291 else
292 {
293 RCLCPP_DEBUG(nh_->get_logger(),"Yield for object avoidance");
294 yield_trajectory = update_traj_for_object(original_trajectory, external_objects_, initial_velocity); // Compute the trajectory
295 }
296
297 // return original trajectory if no difference in trajectory points a.k.a no collision
298 if (fabs(get_trajectory_end_time(original_trajectory) - get_trajectory_end_time(yield_trajectory)) < EPSILON)
299 {
300 resp->trajectory_plan = original_trajectory;
301 }
302 else
303 {
304 yield_trajectory.header.frame_id = "map";
305 yield_trajectory.header.stamp = nh_->now();
306 yield_trajectory.trajectory_id = original_trajectory.trajectory_id;
307 resp->trajectory_plan = yield_trajectory;
308 }
309
310 rclcpp::Time end_time = system_clock.now(); // Planning complete
311
312 auto duration = end_time - start_time;
313 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "ExecutionTime: " << std::to_string(duration.seconds()));
314
315 }
316
317 carma_planning_msgs::msg::TrajectoryPlan YieldPlugin::update_traj_for_cooperative_behavior(const carma_planning_msgs::msg::TrajectoryPlan& original_tp, double current_speed)
318 {
319 carma_planning_msgs::msg::TrajectoryPlan cooperative_trajectory;
320
321 double initial_pos = 0;
322 double goal_pos;
323 double initial_velocity = current_speed;
324 double goal_velocity = req_target_speed_;
325 double planning_time = req_target_plan_time_;
326
327 std::vector<lanelet::BasicPoint2d> host_traj_points = {};
328 for (size_t i=0; i<original_tp.trajectory_points.size(); i++)
329 {
330 lanelet::BasicPoint2d traj_point;
331 traj_point.x() = original_tp.trajectory_points.at(i).x;
332 traj_point.y() = original_tp.trajectory_points.at(i).y;
333 host_traj_points.push_back(traj_point);
334 }
335
336 std::vector<std::pair<int, lanelet::BasicPoint2d>> intersection_points = detect_trajectories_intersection(host_traj_points, req_trajectory_points_);
337 if (!intersection_points.empty())
338 {
339 lanelet::BasicPoint2d intersection_point = intersection_points[0].second;
340 double dx = original_tp.trajectory_points[0].x - intersection_point.x();
341 double dy = original_tp.trajectory_points[0].y - intersection_point.y();
342 // check if a digital_gap is available
343 double digital_gap = check_traj_for_digital_min_gap(original_tp);
344 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"digital_gap: " << digital_gap);
345 goal_pos = sqrt(dx*dx + dy*dy) - config_.minimum_safety_gap_in_meters;
346 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Goal position (goal_pos): " << goal_pos);
347 double collision_time = req_timestamp_ + (intersection_points[0].first * ecef_traj_timestep_) - config_.safety_collision_time_gap_in_s;
348 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"req time stamp: " << req_timestamp_);
349 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Collision time: " << collision_time);
350 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"intersection num: " << intersection_points[0].first);
351 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Planning time: " << planning_time);
352 // calculate distance traveled from beginning of trajectory to collision point
353 double dx2 = intersection_point.x() - req_trajectory_points_[0].x();
354 double dy2 = intersection_point.y() - req_trajectory_points_[0].y();
355 // calculate incoming trajectory speed from time and distance between trajectory points
356 double incoming_trajectory_speed = sqrt(dx2*dx2 + dy2*dy2)/(intersection_points[0].first * ecef_traj_timestep_);
357 // calculate goal velocity from request trajectory
358 goal_velocity = std::min(goal_velocity, incoming_trajectory_speed);
359 double min_time = (initial_velocity - goal_velocity)/config_.yield_max_deceleration_in_ms2;
360
361 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"goal_velocity: " << goal_velocity);
362 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"incoming_trajectory_speed: " << incoming_trajectory_speed);
363
364 if (planning_time > min_time)
365 {
367 double original_max_speed = max_trajectory_speed(original_tp.trajectory_points, get_trajectory_end_time(original_tp));
368 cooperative_trajectory = generate_JMT_trajectory(original_tp, initial_pos, goal_pos, initial_velocity, goal_velocity, planning_time, original_max_speed);
369 }
370 else
371 {
373 RCLCPP_DEBUG(nh_->get_logger(),"The incoming requested trajectory is rejected, due to insufficient gap");
374 cooperative_trajectory = original_tp;
375 }
376
377 }
378 else
379 {
381 RCLCPP_DEBUG(nh_->get_logger(),"The incoming requested trajectory does not overlap with host vehicle's trajectory");
382 cooperative_trajectory = original_tp;
383 }
384
385 return cooperative_trajectory;
386 }
387
388 double get_smallest_time_step_of_traj(const carma_planning_msgs::msg::TrajectoryPlan& original_tp)
389 {
390 double smallest_time_step = std::numeric_limits<double>::infinity();
391 for (size_t i = 0; i < original_tp.trajectory_points.size() - 1; i ++)
392 {
393 smallest_time_step = std::min(smallest_time_step,
394 (rclcpp::Time(original_tp.trajectory_points.at(i + 1).target_time)
395 - rclcpp::Time(original_tp.trajectory_points.at(i).target_time)).seconds());
396 }
397 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("yield_plugin"),"smallest_time_step: " << smallest_time_step);
398
399 return smallest_time_step;
400 }
401
402 carma_planning_msgs::msg::TrajectoryPlan YieldPlugin::generate_JMT_trajectory(const carma_planning_msgs::msg::TrajectoryPlan& original_tp, double initial_pos, double goal_pos,
403 double initial_velocity, double goal_velocity, double planning_time, double original_max_speed)
404 {
405 carma_planning_msgs::msg::TrajectoryPlan jmt_trajectory;
406 std::vector<carma_planning_msgs::msg::TrajectoryPlanPoint> jmt_trajectory_points;
407 jmt_trajectory_points.push_back(original_tp.trajectory_points[0]);
408
409 std::vector<double> original_traj_relative_downtracks = get_relative_downtracks(original_tp);
410 std::vector<double> calculated_speeds = {};
411 std::vector<double> new_relative_downtracks = {};
412 new_relative_downtracks.push_back(0.0);
413 calculated_speeds.push_back(initial_velocity);
414 double new_traj_accumulated_downtrack = 0.0;
415 double original_traj_accumulated_downtrack = original_traj_relative_downtracks.at(1);
416
417 // Up until goal_pos (which also can be until end of the entire original trajectory), generate new speeds at
418 // or near original trajectory points by generating them at a fixed time interval using the JMT polynomial equation
419 const double initial_time = 0;
420 const double initial_accel = 0;
421 const double goal_accel = 0;
422 int new_traj_idx = 1;
423 int original_traj_idx = 1;
424 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Following parameters used for JMT: "
425 "\ninitial_pos: " << initial_pos <<
426 "\ngoal_pos: " << goal_pos <<
427 "\ninitial_velocity: " << initial_velocity <<
428 "\ngoal_velocity: " << goal_velocity <<
429 "\ninitial_accel: " << initial_accel <<
430 "\ngoal_accel: " << goal_accel <<
431 "\nplanning_time: " << planning_time <<
432 "\noriginal_max_speed: " << original_max_speed);
433
434 // Get the polynomial solutions used to generate the trajectory
435 std::vector<double> polynomial_coefficients = quintic_coefficient_calculator::quintic_coefficient_calculator(initial_pos,
436 goal_pos,
437 initial_velocity,
438 goal_velocity,
439 initial_accel,
440 goal_accel,
441 initial_time,
442 planning_time);
443 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Used original_max_speed: " << original_max_speed);
444 const auto smallest_time_step = get_smallest_time_step_of_traj(original_tp);
445 while (new_traj_accumulated_downtrack < goal_pos - EPSILON && original_traj_idx < original_traj_relative_downtracks.size())
446 {
447 const double target_time = new_traj_idx * smallest_time_step;
448 const double downtrack_at_target_time = polynomial_calc(polynomial_coefficients, target_time);
449 double velocity_at_target_time = polynomial_calc_d(polynomial_coefficients, target_time);
450
451 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Calculated speed velocity_at_target_time: " << velocity_at_target_time
452 << ", downtrack_at_target_time: "<< downtrack_at_target_time << ", target_time: " << target_time);
453
454 // if the speed becomes negative, the downtrack starts reversing to negative as well
455 // which will never reach the goal_pos, so break here.
456 if (velocity_at_target_time < 0.0)
457 {
458 break;
459 }
460
461 // Cannot have a negative speed or have a higher speed than that of the original trajectory
462 velocity_at_target_time = std::clamp(velocity_at_target_time, 0.0, original_max_speed);
463
464 // Pick the speed if it matches with the original downtracks
465 if (downtrack_at_target_time >= original_traj_accumulated_downtrack)
466 {
467 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Picked calculated speed velocity_at_target_time: " << velocity_at_target_time
468 << ", downtrack_at_target_time: "<< downtrack_at_target_time << ", target_time: " << target_time);
469 // velocity_at_target_time doesn't exactly correspond to original_traj_accumulated_downtrack but does for new_traj_accumulated_downtrack.
470 // however, the logic is assuming they are close enough that the speed is usable
471 calculated_speeds.push_back(velocity_at_target_time);
472 original_traj_accumulated_downtrack += original_traj_relative_downtracks.at(original_traj_idx);
473 original_traj_idx ++;
474 }
475 new_traj_accumulated_downtrack = downtrack_at_target_time;
476 new_traj_idx++;
477
478 }
479
480 // if the loop above finished prematurely due to negative speed, fill with 0.0 speeds
481 // since the speed crossed 0.0 and algorithm indicates stopping
482 std::fill_n(std::back_inserter(calculated_speeds),
483 std::size(original_traj_relative_downtracks) - std::size(calculated_speeds),
484 0.0);
485
486 // Moving average filter to smoothen the speeds
487 std::vector<double> filtered_speeds = basic_autonomy::smoothing::moving_average_filter(calculated_speeds, config_.speed_moving_average_window_size);
488 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "filtered_speeds size: " << filtered_speeds.size());
489
490 // Replace the original trajectory's associated timestamps based on the newly calculated speeds
491 double prev_speed = filtered_speeds.at(0);
492 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "start speed: " << prev_speed << ", target_time: " << std::to_string(rclcpp::Time(original_tp.trajectory_points[0].target_time).seconds()));
493
494 for(size_t i = 1; i < original_tp.trajectory_points.size(); i++)
495 {
496 carma_planning_msgs::msg::TrajectoryPlanPoint jmt_tpp = original_tp.trajectory_points.at(i);
497
498 // In case only subset of original trajectory needs modification,
499 // the rest of the points should keep the last speed to cruise
500 double current_speed = goal_velocity;
501
502 if (i < filtered_speeds.size())
503 {
504 current_speed = filtered_speeds.at(i);
505 }
506
507 //Force the speed to 0 if below configured value for more control over stopping behavior
508 if (current_speed < config_.max_stop_speed_in_ms)
509 {
510 current_speed = 0;
511 }
512
513 // Derived from constant accelaration kinematic equation: (vi + vf) / 2 * dt = d_dist
514 // This also handles a case correctly when current_speed is 0, but prev_speed is not 0 yet
515 const double dt = (2 * original_traj_relative_downtracks.at(i)) / (current_speed + prev_speed);
516 jmt_tpp.target_time = rclcpp::Time(jmt_trajectory_points.back().target_time) + rclcpp::Duration(dt*1e9);
517
518 if (prev_speed < EPSILON) // Handle a special case if prev_speed (thus current_speed too) is 0
519 {
520 // NOTE: Assigning arbitrary 100 mins dt between points where normally dt is only 1 sec to model a stopping behavior.
521 // Another way to model it is to keep the trajectory point at a same location and increment time slightly. However,
522 // if the vehicle goes past the point, it may cruise toward undesirable location (for example into the intersection).
523 // Keeping the points help the controller steer the vehicle toward direction of travel even when stopping.
524 // Only downside is the trajectory plan is huge where only 15 sec is expected, but since this is stopping case, it shouldn't matter.
525 jmt_tpp.target_time = rclcpp::Time(jmt_trajectory_points.back().target_time) + rclcpp::Duration(6000 * 1e9);
526 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Zero speed = x: " << jmt_tpp.x << ", y:" << jmt_tpp.y
527 << ", t:" << std::to_string(rclcpp::Time(jmt_tpp.target_time).seconds())
528 << ", prev_speed: " << prev_speed << ", current_speed: " << current_speed);
529 }
530 else
531 {
532 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Non-zero speed = x: " << jmt_tpp.x << ", y:" << jmt_tpp.y
533 << ", t:" << std::to_string(rclcpp::Time(jmt_tpp.target_time).seconds())
534 << ", prev_speed: " << prev_speed << ", current_speed: " << current_speed);
535 }
536
537 jmt_trajectory_points.push_back(jmt_tpp);
538 double insta_decel = (current_speed - prev_speed) / (rclcpp::Time(jmt_trajectory_points.at(i).target_time).seconds() - rclcpp::Time(jmt_trajectory_points.at(i - 1).target_time).seconds());
539 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "insta_decel: " << insta_decel );
540 prev_speed = current_speed;
541 }
542
543 jmt_trajectory.header = original_tp.header;
544 jmt_trajectory.trajectory_id = original_tp.trajectory_id;
545 jmt_trajectory.trajectory_points = jmt_trajectory_points;
546 jmt_trajectory.initial_longitudinal_velocity = initial_velocity;
547 return jmt_trajectory;
548 }
549
550 std::optional<GetCollisionResult> YieldPlugin::get_collision(const carma_planning_msgs::msg::TrajectoryPlan& trajectory1,
551 const std::vector<carma_perception_msgs::msg::PredictedState>& trajectory2, double collision_radius, double trajectory1_max_speed)
552 {
553
554 // Iterate through each pair of consecutive points in the trajectories
555 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Starting a new collision detection, trajectory size: "
556 << trajectory1.trajectory_points.size() << ". prediction size: " << trajectory2.size());
557
558 // Iterate through the object to check if it's on the route
559 bool on_route = false;
560 int on_route_idx = 0;
561
562 // A flag to stop searching more than one lanelet if the object has no velocity
563 const auto traj2_speed{std::hypot(trajectory2.front().predicted_velocity.linear.x,
564 trajectory2.front().predicted_velocity.linear.y)};
565 bool traj2_has_zero_speed = traj2_speed < config_.obstacle_zero_speed_threshold_in_ms;
566
567 if (trajectory2.size() < 2)
568 {
569 throw std::invalid_argument("Object on ther road doesn't have enough predicted states! Please check motion_computation is correctly applying predicted states");
570 }
571 const double predict_step_duration = (rclcpp::Time(trajectory2.at(1).header.stamp) - rclcpp::Time(trajectory2.front().header.stamp)).seconds();
572 const double predict_total_duration = get_trajectory_duration(trajectory2);
573
574 if (predict_step_duration < 0.0)
575 {
576 throw std::invalid_argument("Predicted states of the object is malformed. Detected trajectory going backwards in time!");
577 }
578
579 // In order to optimize the for loops for comparing two trajectories, following logic skips every iteration_stride-th points of the traj2.
580 // Since skipping number of points from the traj2 may result in ignoring potential collisions, its value is dependent on two
581 // trajectories' speeds and intervehicle_collision_distance_in_m radius.
582 // Therefore, the derivation first calculates the max time, t, that both actors can move while still being in collision radius:
583 // sqrt( (v1 * t / 2)^2 + (v2 * t / 2)^2 ) = collision_radius. Here v1 and v2 are assumed to be perpendicular to each other and
584 // intersecting at t/2 to get max possible collision_radius. Solving for t gives following:
585 double iteration_stride_max_time_s = 2 * config_.intervehicle_collision_distance_in_m / sqrt(pow(traj2_speed, 2) + pow(trajectory1_max_speed, 2));
586 int iteration_stride = std::max(1, static_cast<int>(iteration_stride_max_time_s / predict_step_duration));
587
588 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Determined iteration_stride: " << iteration_stride
589 << ", with traj2_speed: " << traj2_speed
590 << ", with trajectory1_max_speed: " << trajectory1_max_speed
591 << ", with predict_step_duration: " << predict_step_duration
592 << ", iteration_stride_max_time_s: " << iteration_stride_max_time_s);
593
594 for (size_t j = 0; j < trajectory2.size(); j += iteration_stride) // Saving computation time aiming for 1.5 meter interval
595 {
596 lanelet::BasicPoint2d curr_point;
597 curr_point.x() = trajectory2.at(j).predicted_position.position.x;
598 curr_point.y() = trajectory2.at(j).predicted_position.position.y;
599
600 auto corresponding_lanelets = wm_->getLaneletsFromPoint(curr_point, 8); // some intersection can have 8 overlapping lanelets
601
602 for (const auto& llt: corresponding_lanelets)
603 {
604 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Checking llt: " << llt.id());
605
606 if (route_llt_ids_.find(llt.id()) != route_llt_ids_.end())
607 {
608 on_route = true;
609 on_route_idx = j;
610 break;
611 }
612 }
613 if (on_route || traj2_has_zero_speed)
614 break;
615 }
616
617 if (!on_route)
618 {
619 RCLCPP_DEBUG(nh_->get_logger(), "Predicted states are not on the route! ignoring");
620 return std::nullopt;
621 }
622
623 double smallest_dist = std::numeric_limits<double>::infinity();
624 for (size_t i = 0; i < trajectory1.trajectory_points.size() - 1; ++i)
625 {
626 auto p1a = trajectory1.trajectory_points.at(i);
627 auto p1b = trajectory1.trajectory_points.at(i + 1);
628 double previous_distance_between_predictions = std::numeric_limits<double>::infinity();
629 for (size_t j = on_route_idx; j < trajectory2.size() - 1; j += iteration_stride)
630 {
631 auto p2a = trajectory2.at(j);
632 auto p2b = trajectory2.at(j + 1);
633 double p1a_t = rclcpp::Time(p1a.target_time).seconds();
634 double p1b_t = rclcpp::Time(p1b.target_time).seconds();
635 double p2a_t = rclcpp::Time(p2a.header.stamp).seconds();
636 double p2b_t = rclcpp::Time(p2b.header.stamp).seconds();
637
638 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "p1a.target_time: " << std::to_string(p1a_t) << ", p1b.target_time: " << std::to_string(p1b_t));
639 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "p2a.target_time: " << std::to_string(p2a_t) << ", p2b.target_time: " << std::to_string(p2b_t));
640 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "p1a.x: " << p1a.x << ", p1a.y: " << p1a.y);
641 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "p1b.x: " << p1b.x << ", p1b.y: " << p1b.y);
642
643 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "p2a.x: " << p2a.predicted_position.position.x << ", p2a.y: " << p2a.predicted_position.position.y);
644 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "p2b.x: " << p2b.predicted_position.position.x << ", p2b.y: " << p2b.predicted_position.position.y);
645
646 // Linearly interpolate positions at a common timestamp for both trajectories
647 double dt = (p2a_t - p1a_t) / (p1b_t - p1a_t);
648 double x1 = p1a.x + dt * (p1b.x - p1a.x);
649 double y1 = p1a.y + dt * (p1b.y - p1a.y);
650 double x2 = p2a.predicted_position.position.x;
651 double y2 = p2a.predicted_position.position.y;
652
653 // Calculate the distance between the two interpolated points
654 const auto distance{std::hypot(x1 - x2, y1 - y2)};
655
656 smallest_dist = std::min(distance, smallest_dist);
657 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Smallest_dist: " << smallest_dist << ", distance: " << distance << ", dt: " << dt
658 << ", x1: " << x1 << ", y1: " << y1
659 << ", x2: " << x2 << ", y2: " << y2
660 << ", p2a_t:" << std::to_string(p2a_t));
661
662 // Following "if logic" assumes the traj2 is a simple cv model, aka, traj2 point is a straight line over time.
663 // And current traj1 point is fixed in this iteration.
664 // Then once the distance between the two start to increase over traj2 iteration,
665 // the distance will always increase and it's unnecessary to continue the logic to find the smallest_dist
666 if (previous_distance_between_predictions < distance)
667 {
668 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Stopping search here because the distance between predictions started to increase");
669 break;
670 }
671 previous_distance_between_predictions = distance;
672
673 if (i == 0 && j == 0 && distance > config_.collision_check_radius_in_m)
674 {
675 RCLCPP_DEBUG(nh_->get_logger(), "Too far away" );
676 return std::nullopt;
677 }
678
679 if (distance > collision_radius)
680 {
681 // continue searching for collision
682 continue;
683 }
684
685 GetCollisionResult collision_result;
686 collision_result.point1 = lanelet::BasicPoint2d(x1,y1);
687 collision_result.point2 = lanelet::BasicPoint2d(x2,y2);
688 collision_result.collision_time = rclcpp::Time(p2a.header.stamp);
689 return collision_result;
690 }
691 }
692
693 // No collision detected
694 return std::nullopt;
695 }
696
697 bool YieldPlugin::is_object_behind_vehicle(uint32_t object_id, const rclcpp::Time& collision_time, double vehicle_downtrack, double object_downtrack)
698 {
699 const auto previous_clearance_count = consecutive_clearance_count_for_obstacles_[object_id];
700 // if the object's location is half a length of the vehicle past its rear-axle, it is considered behind
701 // half a length of the vehicle to conservatively estimate the rear axle to rear bumper length
702 if (object_downtrack < vehicle_downtrack - config_.vehicle_length / 2)
703 {
705 RCLCPP_INFO_STREAM(nh_->get_logger(), "Detected an object nearby might be behind the vehicle at timestamp: " << std::to_string(collision_time.seconds()) <<
706 ", and consecutive_clearance_count_for obstacle: " << object_id << ", is: " << consecutive_clearance_count_for_obstacles_[object_id]);
707 }
708 // confirmed false positive for a collision
710 {
711 return true;
712 }
713 // if the clearance counter didn't increase by this point, true collision was detected
714 // therefore reset the consecutive clearance counter as it is no longer consecutive
715 if (consecutive_clearance_count_for_obstacles_[object_id] == previous_clearance_count)
716 {
718 }
719
720 return false;
721 }
722
723 std::optional<rclcpp::Time> YieldPlugin::get_collision_time(const carma_planning_msgs::msg::TrajectoryPlan& original_tp,
724 const carma_perception_msgs::msg::ExternalObject& curr_obstacle, double original_tp_max_speed)
725 {
726 auto plan_start_time = get_trajectory_start_time(original_tp);
727
728 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Object's back time: " << std::to_string(rclcpp::Time(curr_obstacle.predictions.back().header.stamp).seconds())
729 << ", plan_start_time: " << std::to_string(plan_start_time));
730
731 // do not process outdated objects
732 if (rclcpp::Time(curr_obstacle.predictions.back().header.stamp).seconds() <= plan_start_time)
733 {
734 return std::nullopt;
735 }
736
737 std::vector<carma_perception_msgs::msg::PredictedState> new_list;
738 carma_perception_msgs::msg::PredictedState curr_state;
739 // artificially include current position as one of the predicted states
740 curr_state.header.stamp = curr_obstacle.header.stamp;
741 curr_state.predicted_position.position.x = curr_obstacle.pose.pose.position.x;
742 curr_state.predicted_position.position.y = curr_obstacle.pose.pose.position.y;
743 // NOTE: predicted_velocity is not used for collision calculation, but timestamps
744 curr_state.predicted_velocity.linear.x = curr_obstacle.velocity.twist.linear.x;
745 curr_state.predicted_velocity.linear.y = curr_obstacle.velocity.twist.linear.y;
746 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "Object: " << curr_obstacle.id <<", type: " << static_cast<int>(curr_obstacle.object_type)
747 << ", speed_x: " << curr_obstacle.velocity.twist.linear.x << ", speed_y: " << curr_obstacle.velocity.twist.linear.y);
748 new_list.push_back(curr_state);
749 new_list.insert(new_list.end(), curr_obstacle.predictions.cbegin(), curr_obstacle.predictions.cend());
750
751 const auto collision_result = get_collision(original_tp, new_list, config_.intervehicle_collision_distance_in_m, original_tp_max_speed);
752
753 if (!collision_result)
754 {
755 // reset the consecutive clearance counter because no collision was detected at this iteration
756 consecutive_clearance_count_for_obstacles_[curr_obstacle.id] = 0;
757 return std::nullopt;
758 }
759
760 // if within collision radius, it is not a collision if obstacle is behind the vehicle despite being in collision radius
761 const double vehicle_downtrack = wm_->routeTrackPos(collision_result.value().point1).downtrack;
762 const double object_downtrack = wm_->routeTrackPos(collision_result.value().point2).downtrack;
763
764 if (is_object_behind_vehicle(curr_obstacle.id, collision_result.value().collision_time, vehicle_downtrack, object_downtrack))
765 {
766 RCLCPP_INFO_STREAM(nh_->get_logger(), "Confirmed that the object: " << curr_obstacle.id << " is behind the vehicle at timestamp " << std::to_string(collision_result.value().collision_time.seconds()));
767 return std::nullopt;
768 }
769
770 const auto distance{std::hypot(
771 collision_result.value().point1.x() - collision_result.value().point2.x(),
772 collision_result.value().point1.y() - collision_result.value().point2.y()
773 )}; //for debug
774
775 RCLCPP_WARN_STREAM(nh_->get_logger(), "Collision detected for object: " << curr_obstacle.id << ", at timestamp " << std::to_string(collision_result.value().collision_time.seconds()) <<
776 ", x: " << collision_result.value().point1.x() << ", y: " << collision_result.value().point1.y() <<
777 ", within actual downtrack distance: " << object_downtrack - vehicle_downtrack <<
778 ", and collision distance: " << distance);
779
780 return collision_result.value().collision_time;
781 }
782
783 std::unordered_map<uint32_t, rclcpp::Time> YieldPlugin::get_collision_times_concurrently(const carma_planning_msgs::msg::TrajectoryPlan& original_tp,
784 const std::vector<carma_perception_msgs::msg::ExternalObject>& external_objects, double original_tp_max_speed)
785 {
786
787 std::unordered_map<uint32_t, std::future<std::optional<rclcpp::Time>>> futures;
788 std::unordered_map<uint32_t, rclcpp::Time> collision_times;
789
790 // Launch asynchronous tasks to check for collision times
791 for (const auto& object : external_objects) {
792 futures[object.id] = std::async(std::launch::async,[this, &original_tp, &object, &original_tp_max_speed]{
793 return get_collision_time(original_tp, object, original_tp_max_speed);
794 });
795 }
796
797 // Collect results from futures and update collision_times
798 for (const auto& object : external_objects) {
799 if (const auto collision_time{futures.at(object.id).get()}) {
800 collision_times[object.id] = collision_time.value();
801 }
802 }
803
804 return collision_times;
805 }
806
807 std::optional<std::pair<carma_perception_msgs::msg::ExternalObject, double>> YieldPlugin::get_earliest_collision_object_and_time(const carma_planning_msgs::msg::TrajectoryPlan& original_tp,
808 const std::vector<carma_perception_msgs::msg::ExternalObject>& external_objects)
809 {
810 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "ExternalObjects size: " << external_objects.size());
811
812 if (!wm_->getRoute())
813 {
814 RCLCPP_WARN(nh_->get_logger(), "Yield plugin was not able to analyze collision since route is not available! Please check if route is set");
815 return std::nullopt;
816 }
817
818 // save route Ids for faster access
819 for (const auto& llt: wm_->getRoute()->shortestPath())
820 {
821 // TODO: Enhancement https://github.com/usdot-fhwa-stol/carma-platform/issues/2316
822 route_llt_ids_.insert(llt.id());
823 }
824
825 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"External Object List (external_objects) size: " << external_objects.size());
826 const double original_max_speed = max_trajectory_speed(original_tp.trajectory_points, get_trajectory_end_time(original_tp));
827 std::unordered_map<uint32_t, rclcpp::Time> collision_times = get_collision_times_concurrently(original_tp,external_objects, original_max_speed);
828
829 if (collision_times.empty()) { return std::nullopt; }
830
831 const auto earliest_colliding_object_id{std::min_element(
832 std::cbegin(collision_times), std::cend(collision_times),
833 [](const auto & a, const auto & b){ return a.second < b.second; })->first};
834
835 const auto earliest_colliding_object{std::find_if(
836 std::cbegin(external_objects), std::cend(external_objects),
837 [&earliest_colliding_object_id](const auto & object) { return object.id == earliest_colliding_object_id; })};
838
839 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"earliest object x: " << earliest_colliding_object->velocity.twist.linear.x
840 << ", y: " << earliest_colliding_object->velocity.twist.linear.y);
841 return std::make_pair(*earliest_colliding_object, collision_times.at(earliest_colliding_object_id).seconds());
842
843 }
844
845 double YieldPlugin::get_predicted_velocity_at_time(const geometry_msgs::msg::Twist& object_velocity_in_map_frame,
846 const carma_planning_msgs::msg::TrajectoryPlan& original_tp, double timestamp_in_sec_to_predict)
847 {
848 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "timestamp_in_sec_to_predict: " << std::to_string(timestamp_in_sec_to_predict) <<
849 ", trajectory_end_time: " << std::to_string(get_trajectory_end_time(original_tp)));
850
851 double point_b_time = 0.0;
852 carma_planning_msgs::msg::TrajectoryPlanPoint point_a;
853 carma_planning_msgs::msg::TrajectoryPlanPoint point_b;
854
855 // trajectory points' time is guaranteed to be increasing
856 // then find the corresponding point at timestamp_in_sec_to_predict
857 for (size_t i = 0; i < original_tp.trajectory_points.size() - 1; ++i)
858 {
859 point_a = original_tp.trajectory_points.at(i);
860 point_b = original_tp.trajectory_points.at(i + 1);
861 point_b_time = rclcpp::Time(point_b.target_time).seconds();
862 if (point_b_time >= timestamp_in_sec_to_predict)
863 {
864 break;
865 }
866 }
867
868 auto dx = point_b.x - point_a.x;
869 auto dy = point_b.y - point_a.y;
870 const tf2::Vector3 trajectory_direction(dx, dy, 0);
871
872 RCLCPP_DEBUG_STREAM(nh_->get_logger(), "timestamp_in_sec_to_predict: " << std::to_string(timestamp_in_sec_to_predict)
873 << ", point_b_time: " << std::to_string(point_b_time)
874 << ", dx: " << dx << ", dy: " << dy << ", "
875 << ", object_velocity_in_map_frame.x: " << object_velocity_in_map_frame.linear.x
876 << ", object_velocity_in_map_frame.y: " << object_velocity_in_map_frame.linear.y);
877
878 if (trajectory_direction.length() < 0.001) //EPSILON
879 {
880 return 0.0;
881 }
882
883 const tf2::Vector3 object_direction(object_velocity_in_map_frame.linear.x, object_velocity_in_map_frame.linear.y, 0);
884
885 return tf2::tf2Dot(object_direction, trajectory_direction) / trajectory_direction.length();
886 }
887
888 carma_planning_msgs::msg::TrajectoryPlan YieldPlugin::update_traj_for_object(const carma_planning_msgs::msg::TrajectoryPlan& original_tp,
889 const std::vector<carma_perception_msgs::msg::ExternalObject>& external_objects, double initial_velocity)
890 {
891 if (original_tp.trajectory_points.size() < 2)
892 {
893 RCLCPP_WARN(nh_->get_logger(), "Yield plugin received less than 2 points in update_traj_for_object, returning unchanged...");
894 return original_tp;
895 }
896
897 // Get earliest collision object
898 const auto earliest_collision_obj_pair = get_earliest_collision_object_and_time(original_tp, external_objects);
899
900 if (!earliest_collision_obj_pair)
901 {
902 RCLCPP_DEBUG(nh_->get_logger(),"No collision detected, so trajectory not modified.");
903 return original_tp;
904 }
905
906 carma_perception_msgs::msg::ExternalObject earliest_collision_obj = earliest_collision_obj_pair.value().first;
907 double earliest_collision_time_in_seconds = earliest_collision_obj_pair.value().second;
908
909 // Issue (https://github.com/usdot-fhwa-stol/carma-platform/issues/2155): If the yield_plugin can detect if the roadway object is moving along the route,
910 // it is able to plan yielding much earlier and smoother using on_route_vehicle_collision_horizon_in_s.
911
912 const lanelet::BasicPoint2d vehicle_point(original_tp.trajectory_points[0].x,original_tp.trajectory_points[0].y);
913 const double vehicle_downtrack = wm_->routeTrackPos(vehicle_point).downtrack;
914
915 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"vehicle_downtrack: " << vehicle_downtrack);
916
917 RCLCPP_WARN_STREAM(nh_->get_logger(),"Collision Detected!");
918
919 const lanelet::BasicPoint2d object_point(earliest_collision_obj.pose.pose.position.x, earliest_collision_obj.pose.pose.position.y);
920 const double object_downtrack = wm_->routeTrackPos(object_point).downtrack;
921
922 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"object_downtrack: " << object_downtrack);
923
924 const double object_downtrack_lead = std::max(0.0, object_downtrack - vehicle_downtrack);
925 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"object_downtrack_lead: " << object_downtrack_lead);
926
927 // The vehicle's goal velocity of the yielding behavior is to match the velocity of the object along the trajectory.
928 double goal_velocity = get_predicted_velocity_at_time(earliest_collision_obj.velocity.twist, original_tp, earliest_collision_time_in_seconds);
929 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"object's speed along trajectory at collision: " << goal_velocity);
930
931 // roadway object position
932 const double gap_time_until_min_gap_distance = std::max(0.0, object_downtrack_lead - config_.minimum_safety_gap_in_meters)/initial_velocity;
933
934 if (goal_velocity <= config_.obstacle_zero_speed_threshold_in_ms){
935 RCLCPP_WARN_STREAM(nh_->get_logger(),"The obstacle is not moving, goal velocity is set to 0 from: " << goal_velocity);
936 goal_velocity = 0.0;
937 }
938
939 // determine the safety inter-vehicle gap based on speed
940 double safety_gap = std::max(goal_velocity * gap_time_until_min_gap_distance, config_.minimum_safety_gap_in_meters);
941 if (!std::isnormal(safety_gap))
942 {
943 RCLCPP_WARN_STREAM(rclcpp::get_logger("yield_plugin"),"Detected non-normal (nan, inf, etc.) safety_gap."
944 "Making it desired safety gap configured at config_.minimum_safety_gap_in_meters: " << config_.minimum_safety_gap_in_meters);
946 }
948 {
949 // externally_commanded_safety_gap is desired distance gap commanded from external sources
950 // such as different plugin, map, or infrastructure depending on the use case
951 double externally_commanded_safety_gap = check_traj_for_digital_min_gap(original_tp);
952 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"externally_commanded_safety_gap: " << externally_commanded_safety_gap);
953 // if a digital gap is available, it is replaced as safety gap
954 safety_gap = std::max(safety_gap, externally_commanded_safety_gap);
955 }
956
957 const double goal_pos = std::max(0.0, object_downtrack_lead - safety_gap - config_.vehicle_length);
958 const double initial_pos = 0.0; //relative initial position (first trajectory point)
959 const double original_max_speed = max_trajectory_speed(original_tp.trajectory_points, earliest_collision_time_in_seconds);
960 const double delta_v_max = fabs(goal_velocity - original_max_speed);
961 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"delta_v_max: " << delta_v_max << ", safety_gap: " << safety_gap);
962
963 const double time_required_for_comfortable_decel_in_s = config_.acceleration_adjustment_factor * 2 * goal_pos / delta_v_max;
964 const double min_time_required_for_comfortable_decel_in_s = delta_v_max / config_.yield_max_deceleration_in_ms2;
965
966 // planning time for object avoidance
967 double planning_time_in_s = std::max({config_.min_obj_avoidance_plan_time_in_s, time_required_for_comfortable_decel_in_s, min_time_required_for_comfortable_decel_in_s});
968 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"time_required_for_comfortable_decel_in_s: " << time_required_for_comfortable_decel_in_s << ", min_time_required_for_comfortable_decel_in_s: " << min_time_required_for_comfortable_decel_in_s);
969
970 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Object avoidance planning time: " << planning_time_in_s);
971
972 return generate_JMT_trajectory(original_tp, initial_pos, goal_pos, initial_velocity, goal_velocity, planning_time_in_s, original_max_speed);
973 }
974
975
976 std::vector<double> YieldPlugin::get_relative_downtracks(const carma_planning_msgs::msg::TrajectoryPlan& trajectory_plan) const
977 {
978 std::vector<double> downtracks;
979 downtracks.reserve(trajectory_plan.trajectory_points.size());
980 // relative downtrack distance of the fist Point is 0.0
981 downtracks.push_back(0.0);
982 for (size_t i=1; i < trajectory_plan.trajectory_points.size(); i++){
983
984 double dx = trajectory_plan.trajectory_points.at(i).x - trajectory_plan.trajectory_points.at(i-1).x;
985 double dy = trajectory_plan.trajectory_points.at(i).y - trajectory_plan.trajectory_points.at(i-1).y;
986 downtracks.push_back(sqrt(dx*dx + dy*dy));
987 }
988 return downtracks;
989 }
990
991 double YieldPlugin::polynomial_calc(std::vector<double> coeff, double x) const
992 {
993 double result = 0;
994 for (size_t i = 0; i < coeff.size(); i++)
995 {
996 double value = coeff.at(i) * pow(x, static_cast<int>(coeff.size() - 1 - i));
997 result = result + value;
998 }
999 return result;
1000 }
1001
1002 double YieldPlugin::polynomial_calc_d(std::vector<double> coeff, double x) const
1003 {
1004 double result = 0;
1005 for (size_t i = 0; i < coeff.size()-1; i++)
1006 {
1007 double value = static_cast<int>(coeff.size() - 1 - i) * coeff.at(i) * pow(x, static_cast<int>(coeff.size() - 2 - i));
1008 result = result + value;
1009 }
1010 return result;
1011 }
1012
1013 double YieldPlugin::max_trajectory_speed(const std::vector<carma_planning_msgs::msg::TrajectoryPlanPoint>& trajectory_points, double timestamp_in_sec_to_search_until) const
1014 {
1015 double max_speed = 0;
1016 for(size_t i = 0; i < trajectory_points.size() - 2; i++ )
1017 {
1018 double dx = trajectory_points.at(i + 1).x - trajectory_points.at(i).x;
1019 double dy = trajectory_points.at(i + 1).y - trajectory_points.at(i).y;
1020 double d = sqrt(dx*dx + dy*dy);
1021 double t = (rclcpp::Time(trajectory_points.at(i + 1).target_time).seconds() - rclcpp::Time(trajectory_points.at(i).target_time).seconds());
1022 double v = d/t;
1023 if(v > max_speed)
1024 {
1025 max_speed = v;
1026 }
1027 if (rclcpp::Time(trajectory_points.at(i + 1).target_time).seconds() >= timestamp_in_sec_to_search_until)
1028 {
1029 break;
1030 }
1031
1032 }
1033 return max_speed;
1034 }
1035
1036 double YieldPlugin::check_traj_for_digital_min_gap(const carma_planning_msgs::msg::TrajectoryPlan& original_tp) const
1037 {
1038 double desired_gap = 0;
1039
1040 for (size_t i = 0; i < original_tp.trajectory_points.size(); i++)
1041 {
1042 lanelet::BasicPoint2d veh_pos(original_tp.trajectory_points.at(i).x, original_tp.trajectory_points.at(i).y);
1043 auto llts = wm_->getLaneletsFromPoint(veh_pos, 1);
1044 if (llts.empty())
1045 {
1046 RCLCPP_WARN_STREAM(nh_->get_logger(),"Trajectory point: x= " << original_tp.trajectory_points.at(i).x << "y="<< original_tp.trajectory_points.at(i).y);
1047
1048 throw std::invalid_argument("Trajectory Point is not on a valid lanelet.");
1049 }
1050 auto digital_min_gap = llts[0].regulatoryElementsAs<lanelet::DigitalMinimumGap>(); //Returns a list of these elements)
1051 if (!digital_min_gap.empty())
1052 {
1053 double digital_gap = digital_min_gap[0]->getMinimumGap(); // Provided gap is in meters
1054 RCLCPP_DEBUG_STREAM(nh_->get_logger(),"Digital Gap found with value: " << digital_gap);
1055 desired_gap = std::max(desired_gap, digital_gap);
1056 }
1057 }
1058 return desired_gap;
1059 }
1060
1061 void YieldPlugin::set_georeference_string(const std::string& georeference)
1062 {
1063 if (georeference_ != georeference)
1064 {
1065 georeference_ = georeference;
1066 map_projector_ = std::make_shared<lanelet::projection::LocalFrameProjector>(georeference.c_str()); // Build projector from proj string
1067 }
1068 }
1069
1070 void YieldPlugin::set_external_objects(const std::vector<carma_perception_msgs::msg::ExternalObject>& object_list)
1071 {
1072 external_objects_ = object_list;
1073 }
1074
1075} // namespace yield_plugin
std::set< lanelet::Id > route_llt_ids_
void plan_trajectory_callback(carma_planning_msgs::srv::PlanTrajectory::Request::SharedPtr req, carma_planning_msgs::srv::PlanTrajectory::Response::SharedPtr resp)
Service callback for trajectory planning.
std::vector< double > get_relative_downtracks(const carma_planning_msgs::msg::TrajectoryPlan &trajectory_plan) const
calculates distance between trajectory points in a plan
LaneChangeStatusCB lc_status_publisher_
void set_incoming_request_info(std::vector< lanelet::BasicPoint2d > req_trajectory, double req_speed, double req_planning_time, double req_timestamp)
set values for member variables related to cooperative behavior
std::vector< lanelet::BasicPoint2d > req_trajectory_points_
void mobilityrequest_cb(const carma_v2x_msgs::msg::MobilityRequest::UniquePtr msg)
callback for mobility request
double check_traj_for_digital_min_gap(const carma_planning_msgs::msg::TrajectoryPlan &original_tp) const
checks trajectory for minimum gap associated with it
double get_predicted_velocity_at_time(const geometry_msgs::msg::Twist &object_velocity_in_map_frame, const carma_planning_msgs::msg::TrajectoryPlan &original_tp, double timestamp_in_sec_to_predict)
Given the object velocity in map frame with x,y components, this function returns the projected veloc...
std::shared_ptr< lanelet::projection::LocalFrameProjector > map_projector_
std::vector< lanelet::BasicPoint2d > convert_eceftrajectory_to_mappoints(const carma_v2x_msgs::msg::Trajectory &ecef_trajectory) const
convert a carma trajectory from ecef frame to map frame ecef trajectory consists of the point and a s...
std::optional< std::pair< carma_perception_msgs::msg::ExternalObject, double > > get_earliest_collision_object_and_time(const carma_planning_msgs::msg::TrajectoryPlan &original_tp, const std::vector< carma_perception_msgs::msg::ExternalObject > &external_objects)
Return the earliest collision object and time of collision pair from the given trajectory and list of...
std::optional< rclcpp::Time > get_collision_time(const carma_planning_msgs::msg::TrajectoryPlan &original_tp, const carma_perception_msgs::msg::ExternalObject &curr_obstacle, double original_tp_max_speed)
Return collision time given two trajectories with one being external object with predicted steps.
void bsm_cb(const carma_v2x_msgs::msg::BSM::UniquePtr msg)
callback for bsm message
MobilityResponseCB mobility_response_publisher_
std::string bsmIDtoString(carma_v2x_msgs::msg::BSMCoreData bsm_core)
void set_external_objects(const std::vector< carma_perception_msgs::msg::ExternalObject > &object_list)
Setter for external objects with predictions in the environment.
YieldPlugin(std::shared_ptr< carma_ros2_utils::CarmaLifecycleNode > nh, carma_wm::WorldModelConstPtr wm, YieldPluginConfig config, MobilityResponseCB mobility_response_publisher, LaneChangeStatusCB lc_status_publisher)
Constructor.
std::shared_ptr< carma_ros2_utils::CarmaLifecycleNode > nh_
void set_georeference_string(const std::string &georeference)
Setter for map projection string to define lat/lon -> map conversion.
std::unordered_map< uint32_t, rclcpp::Time > get_collision_times_concurrently(const carma_planning_msgs::msg::TrajectoryPlan &original_tp, const std::vector< carma_perception_msgs::msg::ExternalObject > &external_objects, double original_tp_max_speed)
Given the list of objects with predicted states, get all collision times concurrently using multi-thr...
YieldPluginConfig config_
std::optional< GetCollisionResult > get_collision(const carma_planning_msgs::msg::TrajectoryPlan &trajectory1, const std::vector< carma_perception_msgs::msg::PredictedState > &trajectory2, double collision_radius, double trajectory1_max_speed)
Return naive collision time and locations based on collision radius given two trajectories with one b...
std::vector< std::pair< int, lanelet::BasicPoint2d > > detect_trajectories_intersection(std::vector< lanelet::BasicPoint2d > self_trajectory, std::vector< lanelet::BasicPoint2d > incoming_trajectory) const
detect intersection point(s) of two trajectories
lanelet::BasicPoint2d ecef_to_map_point(const carma_v2x_msgs::msg::LocationECEF &ecef_point) const
convert a point in ecef frame (in cm) into map frame (in meters)
carma_planning_msgs::msg::TrajectoryPlan update_traj_for_object(const carma_planning_msgs::msg::TrajectoryPlan &original_tp, const std::vector< carma_perception_msgs::msg::ExternalObject > &external_objects, double initial_velocity)
trajectory is modified to safely avoid obstacles on the road
carma_planning_msgs::msg::TrajectoryPlan generate_JMT_trajectory(const carma_planning_msgs::msg::TrajectoryPlan &original_tp, double initial_pos, double goal_pos, double initial_velocity, double goal_velocity, double planning_time, double original_max_speed)
generate a Jerk Minimizing Trajectory(JMT) with the provided start and end conditions
carma_v2x_msgs::msg::MobilityResponse compose_mobility_response(const std::string &resp_recipient_id, const std::string &req_plan_id, bool response) const
compose a mobility response message
carma_planning_msgs::msg::TrajectoryPlan update_traj_for_cooperative_behavior(const carma_planning_msgs::msg::TrajectoryPlan &original_tp, double current_speed)
update trajectory for yielding to an incoming cooperative behavior
std::unordered_map< uint32_t, int > consecutive_clearance_count_for_obstacles_
std::vector< carma_perception_msgs::msg::ExternalObject > external_objects_
bool is_object_behind_vehicle(uint32_t object_id, const rclcpp::Time &collision_time, double vehicle_point, double object_downtrack)
Check if object location is behind the vehicle using estimates of the vehicle's length and route down...
double max_trajectory_speed(const std::vector< carma_planning_msgs::msg::TrajectoryPlanPoint > &trajectory_points, double timestamp_in_sec_to_search_until) const
calculates the maximum speed in a set of tajectory points
double polynomial_calc(std::vector< double > coeff, double x) const
calculate quintic polynomial equation for a given x
double polynomial_calc_d(std::vector< double > coeff, double x) const
calculate derivative of quintic polynomial equation for a given x
carma_wm::WorldModelConstPtr wm_
std::ostringstream oss
std::vector< double > moving_average_filter(const std::vector< double > input, int window_size, bool ignore_first_point=true)
Extremely simplie moving average filter.
Definition: filters.cpp:24
auto to_string(const UtmZone &zone) -> std::string
Definition: utm_zone.cpp:21
std::shared_ptr< const WorldModel > WorldModelConstPtr
Definition: WorldModel.hpp:452
list first_point
Definition: process_bag.py:52
std::function< void(const carma_planning_msgs::msg::LaneChangeStatus &)> LaneChangeStatusCB
double get_smallest_time_step_of_traj(const carma_planning_msgs::msg::TrajectoryPlan &original_tp)
double get_trajectory_start_time(const carma_planning_msgs::msg::TrajectoryPlan &trajectory)
double get_trajectory_end_time(const carma_planning_msgs::msg::TrajectoryPlan &trajectory)
std::function< void(const carma_v2x_msgs::msg::MobilityResponse &)> MobilityResponseCB
double get_trajectory_duration(const carma_planning_msgs::msg::TrajectoryPlan &trajectory)
Stuct containing the algorithm configuration values for the YieldPluginConfig.
bool always_accept_mobility_request
double max_stop_speed_in_ms
double collision_check_radius_in_m
std::string vehicle_id
double speed_moving_average_window_size
double acceleration_adjustment_factor
int consecutive_clearance_count_for_obstacles_threshold
double yield_max_deceleration_in_ms2
double intervehicle_collision_distance_in_m
double obstacle_zero_speed_threshold_in_ms
bool enable_cooperative_behavior
double min_obj_avoidance_plan_time_in_s
double minimum_safety_gap_in_meters
double safety_collision_time_gap_in_s
Convenience class for saving collision results.
lanelet::BasicPoint2d point1
lanelet::BasicPoint2d point2
constexpr auto EPSILON