Carma-platform v4.2.0
CARMA Platform is built on robot operating system (ROS) and utilizes open source software (OSS) that enables Cooperative Driving Automation (CDA) features to allow Automated Driving Systems to interact and cooperate with infrastructure and other vehicles through communication.
carma_cooperative_perception Namespace Reference

Classes

struct  AccelerationSet4Way
 
struct  DDateTime
 
class  DetectionListVizNode
 
class  ExternalObjectListToDetectionListNode
 
class  ExternalObjectListToSdsmNode
 
struct  Heading
 
class  HostVehicleFilterNode
 
struct  MapCoordinate
 
struct  MeasurementTimeOffset
 
struct  MetricSe2
 Calculates distance between a point and detection in SE(2) (special Euclidean) space. More...
 
class  Month
 
struct  MotionModelMapping
 
class  MultipleObjectTrackerNode
 
struct  Position3D
 
struct  PositionOffsetXYZ
 
class  SdsmToDetectionListConfig
 
class  SdsmToDetectionListNode
 
struct  SemanticDistance2dScore
 Calculate 2D Euclidean distance between track and detection. More...
 
struct  Speed
 
class  TrackListToExternalObjectListNode
 
struct  UtmCoordinate
 Represents a position using UTM coordinates. More...
 
struct  UtmDisplacement
 Represent a displacement from a UTM coordinate. More...
 
struct  UtmZone
 
struct  Wgs84Coordinate
 Represents a position using WGS-84 coordinates. More...
 

Typedefs

using Detection = std::variant< multiple_object_tracking::CtrvDetection, multiple_object_tracking::CtraDetection >
 
using Track = std::variant< multiple_object_tracking::CtrvTrack, multiple_object_tracking::CtraTrack >
 

Enumerations

enum class  Hemisphere { kNorth , kSouth }
 

Functions

auto transform_from_map_to_utm (carma_cooperative_perception_interfaces::msg::DetectionList detection_list, const std::string &map_origin) -> carma_cooperative_perception_interfaces::msg::DetectionList
 
constexpr auto operator+= (UtmCoordinate &coordinate, const UtmDisplacement &displacement) -> UtmCoordinate &
 Addition-assignment operator overload. More...
 
constexpr auto operator+ (UtmCoordinate coordinate, const UtmDisplacement &displacement) -> UtmCoordinate
 Addition operator overload. More...
 
constexpr auto operator+ (const UtmDisplacement &displacement, UtmCoordinate coordinate) -> UtmCoordinate
 Addition operator overload. More...
 
constexpr auto operator-= (UtmCoordinate &coordinate, const UtmDisplacement &displacement) -> UtmCoordinate &
 Subtraction-assignment operator overload. More...
 
constexpr auto operator- (UtmCoordinate coordinate, const UtmDisplacement &displacement) -> UtmCoordinate
 Subtraction operator overload. More...
 
constexpr auto operator- (const UtmDisplacement &displacement, UtmCoordinate coordinate) -> UtmCoordinate
 Subtraction operator overload. More...
 
auto calculate_utm_zone (const Wgs84Coordinate &coordinate) -> UtmZone
 Get the UTM zone number from a WGS-84 coordinate. More...
 
auto project_to_carma_map (const Wgs84Coordinate &coordinate, std::string_view proj_string) -> MapCoordinate
 
auto project_to_utm (const Wgs84Coordinate &coordinate) -> UtmCoordinate
 Projects a Wgs84Coordinate to its corresponding UTM zone. More...
 
auto calculate_grid_convergence (const Wgs84Coordinate &position, const UtmZone &zone) -> units::angle::degree_t
 Calculate grid convergence at a given position. More...
 
auto calculate_grid_convergence (const Wgs84Coordinate &position, std::string_view georeference) -> units::angle::degree_t
 
auto euclidean_distance_squared (const geometry_msgs::msg::Pose &a, const geometry_msgs::msg::Pose &b) -> double
 
auto to_time_msg (const DDateTime &d_date_time, bool is_simulation) -> builtin_interfaces::msg::Time
 
auto calc_detection_time_stamp (DDateTime d_date_time, const MeasurementTimeOffset &offset) -> DDateTime
 
auto to_ddate_time_msg (const builtin_interfaces::msg::Time &builtin_time) -> j2735_v2x_msgs::msg::DDateTime
 
auto calc_sdsm_time_offset (const builtin_interfaces::msg::Time &external_object_list_time, const builtin_interfaces::msg::Time &external_object_time) -> carma_v2x_msgs::msg::MeasurementTimeOffset
 
auto to_position_msg (const UtmCoordinate &position_utm) -> geometry_msgs::msg::Point
 
auto heading_to_enu_yaw (const units::angle::degree_t &heading) -> units::angle::degree_t
 
auto calc_relative_position (const geometry_msgs::msg::PoseStamped &current_pose, const carma_v2x_msgs::msg::PositionOffsetXYZ &detected_object_data) -> carma_v2x_msgs::msg::PositionOffsetXYZ
 
auto transform_pose_from_map_to_wgs84 (const geometry_msgs::msg::PoseStamped &source_pose, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> carma_v2x_msgs::msg::Position3D
 
auto to_detection_list_msg (const carma_v2x_msgs::msg::SensorDataSharingMessage &sdsm, std::string_view georeference, bool is_simulation, const std::optional< SdsmToDetectionListConfig > &conversion_adjustment) -> carma_cooperative_perception_interfaces::msg::DetectionList
 Converts a carma_v2x_msgs::msg::SensorDataSharingMessage (SDSM) to carma_cooperative_perception_interfaces::msg::DetectionList format. More...
 
auto to_detection_msg (const carma_perception_msgs::msg::ExternalObject &object, const MotionModelMapping &motion_model_mapping) -> carma_cooperative_perception_interfaces::msg::Detection
 
auto to_detection_list_msg (const carma_perception_msgs::msg::ExternalObjectList &object_list, const MotionModelMapping &motion_model_mapping) -> carma_cooperative_perception_interfaces::msg::DetectionList
 
auto to_external_object_msg (const carma_cooperative_perception_interfaces::msg::Track &track) -> carma_perception_msgs::msg::ExternalObject
 
auto to_external_object_list_msg (const carma_cooperative_perception_interfaces::msg::TrackList &track_list) -> carma_perception_msgs::msg::ExternalObjectList
 
auto to_sdsm_msg (const carma_perception_msgs::msg::ExternalObjectList &external_object_list, const geometry_msgs::msg::PoseStamped &current_pose, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> carma_v2x_msgs::msg::SensorDataSharingMessage
 
auto to_detected_object_data_msg (const carma_perception_msgs::msg::ExternalObject &external_object, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> carma_v2x_msgs::msg::DetectedObjectData
 
auto enu_orientation_to_true_heading (double yaw, const lanelet::BasicPoint3d &obj_pose, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> units::angle::degree_t
 
auto make_detection (const carma_cooperative_perception_interfaces::msg::Detection &msg) -> Detection
 
template<typename T >
constexpr auto remove_units (const T &value)
 
constexpr auto operator== (const UtmZone &lhs, const UtmZone &rhs) -> bool
 
constexpr auto operator!= (const UtmZone &lhs, const UtmZone &rhs) -> bool
 
auto to_string (const UtmZone &zone) -> std::string
 
auto ned_to_enu (const PositionOffsetXYZ &offset_ned) noexcept
 
auto to_position_msg (const MapCoordinate &position_map) -> geometry_msgs::msg::Point
 
std::string to_string (const std::vector< std::uint8_t > &temporary_id)
 
void convert_object_type (carma_cooperative_perception_interfaces::msg::Detection &detection, const j3224_v2x_msgs::msg::ObjectType &j3224_obj_type)
 
void convert_covariances (carma_cooperative_perception_interfaces::msg::Detection &detection, const carma_v2x_msgs::msg::DetectedObjectCommonData &common_data, const std::optional< SdsmToDetectionListConfig > &conversion_adjustment)
 
auto make_semantic_class (std::size_t numeric_value)
 
auto semantic_class_to_numeric_value (mot::SemanticClass semantic_class)
 
auto make_ctrv_detection (const carma_cooperative_perception_interfaces::msg::Detection &msg) -> Detection
 
auto make_ctra_detection (const carma_cooperative_perception_interfaces::msg::Detection &msg) -> Detection
 
static auto to_ros_msg (const mot::CtraTrack &track)
 
static auto to_ros_msg (const mot::CtrvTrack &track)
 
static auto to_ros_msg (const Track &track)
 
static auto temporally_align_detections (std::vector< Detection > &detections, units::time::second_t end_time) -> void
 
static auto predict_track_states (std::vector< Track > tracks, units::time::second_t end_time)
 

Variables

constexpr Month January {1}
 
constexpr Month February {2}
 
constexpr Month March {3}
 
constexpr Month April {4}
 
constexpr Month May {5}
 
constexpr Month June {6}
 
constexpr Month July {7}
 
constexpr Month August {8}
 
constexpr Month September {9}
 
constexpr Month October {10}
 
constexpr Month November {11}
 
constexpr Month December {12}
 

Detailed Description

This file contains functions and helper structs to facilitate transforming WGS-84 coordinates to UTM ones.

This file contains a Month class implementation that should be source-compatible with std::chrono::month. Until CARMA targets C++20, we will have to use this instead of the standard library.

Typedef Documentation

◆ Detection

using carma_cooperative_perception::Detection = typedef std::variant<multiple_object_tracking::CtrvDetection, multiple_object_tracking::CtraDetection>

Definition at line 34 of file multiple_object_tracker_component.hpp.

◆ Track

using carma_cooperative_perception::Track = typedef std::variant<multiple_object_tracking::CtrvTrack, multiple_object_tracking::CtraTrack>

Definition at line 36 of file multiple_object_tracker_component.hpp.

Enumeration Type Documentation

◆ Hemisphere

Enumerator
kNorth 
kSouth 

Definition at line 23 of file utm_zone.hpp.

Function Documentation

◆ calc_detection_time_stamp()

auto carma_cooperative_perception::calc_detection_time_stamp ( DDateTime  d_date_time,
const MeasurementTimeOffset offset 
) -> DDateTime

Definition at line 179 of file msg_conversion.cpp.

181{
182 sdsm_time.second.value() += offset.measurement_time_offset;
183
184 return sdsm_time;
185}

References carma_cooperative_perception::DDateTime::second.

Referenced by to_detection_list_msg().

Here is the caller graph for this function:

◆ calc_relative_position()

auto carma_cooperative_perception::calc_relative_position ( const geometry_msgs::msg::PoseStamped &  current_pose,
const carma_v2x_msgs::msg::PositionOffsetXYZ &  detected_object_data 
) -> carma_v2x_msgs::msg::PositionOffsetXYZ

Definition at line 314 of file msg_conversion.cpp.

318{
319 carma_v2x_msgs::msg::PositionOffsetXYZ adjusted_offset;
320
321 adjusted_offset.offset_x.object_distance =
322 position_offset.offset_x.object_distance - source_pose.pose.position.x;
323 adjusted_offset.offset_y.object_distance =
324 position_offset.offset_y.object_distance - source_pose.pose.position.y;
325 adjusted_offset.offset_z.object_distance =
326 position_offset.offset_z.object_distance - source_pose.pose.position.z;
327 adjusted_offset.presence_vector = carma_v2x_msgs::msg::PositionOffsetXYZ::HAS_OFFSET_Z;
328
329 return adjusted_offset;
330}

Referenced by to_sdsm_msg().

Here is the caller graph for this function:

◆ calc_sdsm_time_offset()

auto carma_cooperative_perception::calc_sdsm_time_offset ( const builtin_interfaces::msg::Time &  external_object_list_time,
const builtin_interfaces::msg::Time &  external_object_time 
) -> carma_v2x_msgs::msg::MeasurementTimeOffset

Definition at line 237 of file msg_conversion.cpp.

241{
242 carma_v2x_msgs::msg::MeasurementTimeOffset time_offset;
243
244 boost::posix_time::ptime external_object_list_time =
245 boost::posix_time::from_time_t(external_object_list_stamp.sec) +
246 boost::posix_time::nanosec(external_object_list_stamp.nanosec);
247
248 boost::posix_time::ptime external_object_time =
249 boost::posix_time::from_time_t(external_object_stamp.sec) +
250 boost::posix_time::nanosec(external_object_stamp.nanosec);
251
252 boost::posix_time::time_duration offset_duration =
253 (external_object_list_time - external_object_time);
254
255 time_offset.measurement_time_offset = offset_duration.total_seconds();
256
257 return time_offset;
258}

Referenced by to_sdsm_msg().

Here is the caller graph for this function:

◆ calculate_grid_convergence() [1/2]

auto carma_cooperative_perception::calculate_grid_convergence ( const Wgs84Coordinate position,
const UtmZone zone 
) -> units::angle::degree_t

Calculate grid convergence at a given position.

This function calculates the grid convergence at a specific coordinate with respect to a specified UTM zone. Grid convergence is the angle between true north and grid north.

Parameters
[in]positionPosition represented in WGS-84 coordinates
[in]zoneThe UTM zone
Returns
Grid convergence angle

Definition at line 154 of file geodetic.cpp.

156{
157 // N.B. developers: PROJ and the related geodetic calculations seem particularly sensitive
158 // to the parameters in this PROJ string. If you run into problems with you calculation
159 // results, carefully check this or any other PROJ string.
160 std::string proj_string{
161 "+proj=utm +zone=" + std::to_string(zone.number) + " +datum=WGS84 +units=m +no_defs"};
162
163 if (zone.hemisphere == Hemisphere::kSouth) {
164 proj_string += " +south";
165 }
166
167 return calculate_grid_convergence(position, proj_string.c_str());
168}
auto calculate_grid_convergence(const Wgs84Coordinate &position, const UtmZone &zone) -> units::angle::degree_t
Calculate grid convergence at a given position.
Definition: geodetic.cpp:154
auto to_string(const UtmZone &zone) -> std::string
Definition: utm_zone.cpp:21

References calculate_grid_convergence(), kSouth, and to_string().

Referenced by calculate_grid_convergence(), and to_detection_list_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ calculate_grid_convergence() [2/2]

auto carma_cooperative_perception::calculate_grid_convergence ( const Wgs84Coordinate position,
std::string_view  georeference 
) -> units::angle::degree_t

Definition at line 125 of file geodetic.cpp.

127{
128 gsl::owner<PJ_CONTEXT *> context = proj_context_create();
129 proj_log_level(context, PJ_LOG_NONE);
130
131 if (context == nullptr) {
132 const std::string error_string{proj_errno_string(proj_context_errno(context))};
133 throw std::invalid_argument("Could not create PROJ context: " + error_string + '.');
134 }
135
136 gsl::owner<PJ *> transform = proj_create(context, georeference.data());
137
138 const auto factors = proj_factors(
139 transform, proj_coord(
141 proj_torad(carma_cooperative_perception::remove_units(position.latitude)), 0, 0));
142
143 if (proj_context_errno(context) != 0) {
144 const std::string error_string{proj_errno_string(proj_context_errno(context))};
145 throw std::invalid_argument("Could not calculate PROJ factors: " + error_string + '.');
146 }
147
148 proj_destroy(transform);
149 proj_context_destroy(context);
150
151 return units::angle::degree_t{proj_todeg(factors.meridian_convergence)};
152}
constexpr auto remove_units(const T &value)

References remove_units().

Here is the call graph for this function:

◆ calculate_utm_zone()

auto carma_cooperative_perception::calculate_utm_zone ( const Wgs84Coordinate coordinate) -> UtmZone

Get the UTM zone number from a WGS-84 coordinate.

Note: This function will not work for coordinates in the special UTM zones Svalbard and Norway.

Parameters
[in]coordinateWGS-84 coordinate
Returns
The UTM zone containing the coordinate

Definition at line 27 of file geodetic.cpp.

28{
29 // Note: std::floor prevents this function from being constexpr (until C++23)
30
31 static constexpr std::size_t zone_width{6};
32 static constexpr std::size_t max_zones{60};
33
34 // Works for longitudes [-180, 360). Longitude of 360 will assign 61.
35 const auto number{
36 static_cast<std::size_t>(
37 (std::floor(carma_cooperative_perception::remove_units(coordinate.longitude) + 180) /
38 zone_width)) +
39 1};
40
41 UtmZone zone;
42
43 // std::min is used to handle the "UTM Zone 61" case.
44 zone.number = std::min(number, max_zones);
45
46 if (coordinate.latitude < units::angle::degree_t{0.0}) {
47 zone.hemisphere = Hemisphere::kSouth;
48 } else {
49 zone.hemisphere = Hemisphere::kNorth;
50 }
51
52 return zone;
53}

References carma_cooperative_perception::UtmZone::hemisphere, kNorth, kSouth, carma_cooperative_perception::UtmZone::number, and remove_units().

Referenced by project_to_utm(), and transform_from_map_to_utm().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ convert_covariances()

void carma_cooperative_perception::convert_covariances ( carma_cooperative_perception_interfaces::msg::Detection &  detection,
const carma_v2x_msgs::msg::DetectedObjectCommonData &  common_data,
const std::optional< SdsmToDetectionListConfig > &  conversion_adjustment 
)

Definition at line 391 of file msg_conversion.cpp.

394{
395 // Variables to store original covariance values for debugging
396 double original_pose_covariance_x = 0.0;
397 double original_pose_covariance_y = 0.0;
398 double original_pose_covariance_z = 0.0;
399 double original_pose_covariance_yaw = 0.0;
400 double original_twist_covariance_x = 0.0;
401 double original_twist_covariance_z = 0.0;
402 double original_twist_covariance_yaw = 0.0;
403
404 // Calculate and log original pose covariance values
405 try {
406 original_pose_covariance_x =
407 0.5 * std::pow(j2735_v2x_msgs::to_double(common_data.pos_confidence.pos).value(), 2);
408 original_pose_covariance_y = original_pose_covariance_x;
409
410 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
411 "Original pose covariance X/Y: " << original_pose_covariance_x);
412 } catch (const std::bad_optional_access &) {
413 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
414 "Missing position confidence");
415 }
416
417 try {
418 original_pose_covariance_z =
419 0.5 * std::pow(j2735_v2x_msgs::to_double(common_data.pos_confidence.elevation).value(), 2);
420
421 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
422 "Original pose covariance Z: " << original_pose_covariance_z);
423 } catch (const std::bad_optional_access &) {
424 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
425 "Missing elevation confidence");
426 }
427
428 try {
429 // Get original heading/yaw covariance
430 original_pose_covariance_yaw =
431 0.5 * std::pow(j2735_v2x_msgs::to_double(common_data.heading_conf).value(), 2);
432
433 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
434 "Original pose covariance yaw: " << original_pose_covariance_yaw);
435 } catch (const std::bad_optional_access &) {
436 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
437 "Missing heading confidence");
438 }
439
440 try {
441 // Get original linear x velocity covariance
442 original_twist_covariance_x =
443 0.5 * std::pow(j2735_v2x_msgs::to_double(common_data.speed_confidence).value(), 2);
444
445 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
446 "Original twist covariance X: " << original_twist_covariance_x);
447 } catch (const std::bad_optional_access &) {
448 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
449 "Missing speed confidence");
450 }
451
452 if (!common_data.speed_z.unavailable){
453 try {
454 // Get original linear z velocity covariance
455 original_twist_covariance_z =
456 0.5 * std::pow(j2735_v2x_msgs::to_double(common_data.speed_confidence_z).value(), 2);
457
458 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
459 "Original twist covariance Z: " << original_twist_covariance_z);
460 } catch (const std::bad_optional_access &) {
461 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
462 "Missing z-speed confidence");
463 }
464 }
465 else{
466 original_twist_covariance_z = 0.0;
467 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
468 "Original twist covariance Z: 0.0 (speed_z not provided)");
469 }
470
471 // Having non-zero value means available
472 if(static_cast<bool>(common_data.accel_4_way.yaw_rate)){
473 try {
474 // Get original angular z velocity (yaw rate) covariance
475 original_twist_covariance_yaw =
476 0.5 * std::pow(j2735_v2x_msgs::to_double(common_data.acc_cfd_yaw).value(), 2);
477
478 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
479 "Original twist covariance yaw: " << original_twist_covariance_yaw);
480 } catch (const std::bad_optional_access &) {
481 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
482 "Missing yaw-rate confidence");
483 }
484 }
485 else{
486 original_twist_covariance_yaw = 0.0;
487 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
488 "Original twist covariance yaw: 0.0 (yaw_rate not provided)");
489 }
490
491 if (conversion_adjustment && conversion_adjustment.value().overwrite_covariance)
492 {
493 // Hardcoded pose covariance
494 detection.pose.covariance[0] = conversion_adjustment.value().pose_covariance_x;
495 detection.pose.covariance[7] = conversion_adjustment.value().pose_covariance_y;
496 detection.pose.covariance[14] = conversion_adjustment.value().pose_covariance_z;
497 detection.pose.covariance[35] = conversion_adjustment.value().pose_covariance_yaw;
498
499 // Hardcoded twist covariance
500 detection.twist.covariance[0] = conversion_adjustment.value().twist_covariance_x;
501 detection.twist.covariance[14] = conversion_adjustment.value().twist_covariance_z;
502 detection.twist.covariance[35] = conversion_adjustment.value().twist_covariance_yaw;
503
504 // Print comparison between original and hardcoded values
505 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
506 "POSE COVARIANCE COMPARISON - Original vs Hardcoded: " <<
507 "X: " << original_pose_covariance_x << " -> " << detection.pose.covariance[0] << ", " <<
508 "Y: " << original_pose_covariance_y << " -> " << detection.pose.covariance[7] << ", " <<
509 "Z: " << original_pose_covariance_z << " -> " << detection.pose.covariance[14] << ", " <<
510 "Yaw: " << original_pose_covariance_yaw << " -> " << detection.pose.covariance[35]);
511
512 RCLCPP_DEBUG_STREAM(rclcpp::get_logger("sdsm_to_detection_list_node"),
513 "TWIST COVARIANCE COMPARISON - Original vs Hardcoded: " <<
514 "X: " << original_twist_covariance_x << " -> , " << detection.twist.covariance[0] << ", " <<
515 "Z: " << original_twist_covariance_z << " -> , " << detection.twist.covariance[14] << ", " <<
516 "Yaw: " << original_twist_covariance_yaw << " -> " << detection.twist.covariance[35]);
517 }
518 else
519 {
520 // Original pose covariance
521 detection.pose.covariance[0] = original_pose_covariance_x;
522 detection.pose.covariance[7] = original_pose_covariance_y;
523 detection.pose.covariance[14] = original_pose_covariance_z;
524 detection.pose.covariance[35] = original_pose_covariance_yaw;
525
526 // Original twist covariance
527 detection.twist.covariance[0] = original_twist_covariance_x;
528 detection.twist.covariance[14] = original_twist_covariance_z;
529 detection.twist.covariance[35] = original_twist_covariance_yaw;
530 }
531
532 // Fill zeros for all other twist covariance values
533 for (size_t i = 0; i < 36; ++i) {
534 if (i != 0 && i != 14 && i != 35) {
535 detection.twist.covariance[i] = 0.0;
536 }
537 }
538
539 // Fill zeros for all other pose covariance values
540 for (size_t i = 0; i < 36; ++i) {
541 if (i != 0 && i != 7 && i != 14 && i != 35) {
542 detection.pose.covariance[i] = 0.0;
543 }
544 }
545}

References process_bag::i.

Referenced by to_detection_list_msg().

Here is the caller graph for this function:

◆ convert_object_type()

void carma_cooperative_perception::convert_object_type ( carma_cooperative_perception_interfaces::msg::Detection &  detection,
const j3224_v2x_msgs::msg::ObjectType &  j3224_obj_type 
)

Definition at line 368 of file msg_conversion.cpp.

370{
371 switch (j3224_obj_type.object_type) {
372 case j3224_obj_type.ANIMAL:
373 detection.motion_model = detection.MOTION_MODEL_CTRV;
374 // We don't have a good semantic class mapping for animals
375 detection.semantic_class = detection.SEMANTIC_CLASS_UNKNOWN;
376 break;
377 case j3224_obj_type.VRU:
378 detection.motion_model = detection.MOTION_MODEL_CTRV;
379 detection.semantic_class = detection.SEMANTIC_CLASS_PEDESTRIAN;
380 break;
381 case j3224_obj_type.VEHICLE:
382 detection.motion_model = detection.MOTION_MODEL_CTRV;
383 detection.semantic_class = detection.SEMANTIC_CLASS_SMALL_VEHICLE;
384 break;
385 default:
386 detection.motion_model = detection.MOTION_MODEL_CTRV;
387 detection.semantic_class = detection.SEMANTIC_CLASS_UNKNOWN;
388 }
389}

Referenced by to_detection_list_msg().

Here is the caller graph for this function:

◆ enu_orientation_to_true_heading()

auto carma_cooperative_perception::enu_orientation_to_true_heading ( double  yaw,
const lanelet::BasicPoint3d &  obj_pose,
const std::shared_ptr< lanelet::projection::LocalFrameProjector > &  map_projection 
) -> units::angle::degree_t

Definition at line 287 of file msg_conversion.cpp.

291{
292 // Get object geodetic position
293 lanelet::GPSPoint wgs_obj_pose = map_projection->reverse(obj_pose);
294
295 // Get WGS84 Heading
296 gsl::owner<PJ_CONTEXT *> context = proj_context_create();
297 gsl::owner<PJ *> transform = proj_create(context, map_projection->ECEF_PROJ_STR);
298 units::angle::degree_t grid_heading{std::fmod(90 - yaw + 360, 360)};
299
300 const auto factors = proj_factors(
301 transform, proj_coord(proj_torad(wgs_obj_pose.lon), proj_torad(wgs_obj_pose.lat), 0, 0));
302 units::angle::degree_t grid_convergence{proj_todeg(factors.meridian_convergence)};
303
304 auto wgs_heading = grid_convergence + grid_heading;
305
306 proj_destroy(transform);
307 proj_context_destroy(context);
308
309 return wgs_heading;
310}

Referenced by to_detected_object_data_msg().

Here is the caller graph for this function:

◆ euclidean_distance_squared()

auto carma_cooperative_perception::euclidean_distance_squared ( const geometry_msgs::msg::Pose &  a,
const geometry_msgs::msg::Pose &  b 
) -> double

Definition at line 189 of file host_vehicle_filter_component.cpp.

191{
192 return std::pow(a.position.x - b.position.x, 2) + std::pow(a.position.y - b.position.y, 2) +
193 std::pow(a.position.z - b.position.z, 2);
194}

Referenced by carma_cooperative_perception::HostVehicleFilterNode::attempt_filter_and_republish().

Here is the caller graph for this function:

◆ heading_to_enu_yaw()

auto carma_cooperative_perception::heading_to_enu_yaw ( const units::angle::degree_t &  heading) -> units::angle::degree_t

Definition at line 282 of file msg_conversion.cpp.

283{
284 return units::angle::degree_t{std::fmod(-(remove_units(heading) - 90.0) + 360.0, 360.0)};
285}

References remove_units().

Referenced by to_detection_list_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ make_ctra_detection()

auto carma_cooperative_perception::make_ctra_detection ( const carma_cooperative_perception_interfaces::msg::Detection &  msg) -> Detection

Definition at line 115 of file multiple_object_tracker_component.cpp.

117{
118 const auto timestamp{
119 units::time::second_t{static_cast<double>(msg.header.stamp.sec)} +
120 units::time::nanosecond_t{static_cast<double>(msg.header.stamp.nanosec)}};
121
122 tf2::Quaternion orientation;
123 orientation.setX(msg.pose.pose.orientation.x);
124 orientation.setY(msg.pose.pose.orientation.y);
125 orientation.setZ(msg.pose.pose.orientation.z);
126 orientation.setW(msg.pose.pose.orientation.w);
127
128 double roll{0.0};
129 double pitch{0.0};
130 double yaw{0.0};
131
132 tf2::Matrix3x3 matrix{orientation};
133 matrix.getRPY(roll, pitch, yaw);
134
135 const mot::CtraState state{
136 units::length::meter_t{msg.pose.pose.position.x},
137 units::length::meter_t{msg.pose.pose.position.y},
138 units::velocity::meters_per_second_t{msg.twist.twist.linear.x},
139 mot::Angle{units::angle::radian_t{yaw}},
140 units::angular_velocity::radians_per_second_t{msg.twist.twist.angular.z},
141 units::acceleration::meters_per_second_squared_t{msg.accel.accel.linear.x}};
142
143 mot::CtraStateCovariance covariance = mot::CtraStateCovariance::Zero();
144 covariance(0, 0) = msg.pose.covariance.at(0);
145 covariance(1, 1) = msg.pose.covariance.at(7);
146 covariance(2, 2) = msg.twist.covariance.at(0);
147 covariance(3, 3) = msg.pose.covariance.at(35);
148 covariance(4, 4) = msg.twist.covariance.at(35);
149 covariance(5, 5) = msg.accel.covariance.at(0);
150
151 return mot::CtraDetection{
152 timestamp, state, covariance, mot::Uuid{msg.id}, make_semantic_class(msg.semantic_class)};
153}
auto make_semantic_class(std::size_t numeric_value)

References make_semantic_class().

Referenced by make_detection().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ make_ctrv_detection()

auto carma_cooperative_perception::make_ctrv_detection ( const carma_cooperative_perception_interfaces::msg::Detection &  msg) -> Detection

Definition at line 77 of file multiple_object_tracker_component.cpp.

79{
80 const auto timestamp{
81 units::time::second_t{static_cast<double>(msg.header.stamp.sec)} +
82 units::time::nanosecond_t{static_cast<double>(msg.header.stamp.nanosec)}};
83
84 tf2::Quaternion orientation;
85 orientation.setX(msg.pose.pose.orientation.x);
86 orientation.setY(msg.pose.pose.orientation.y);
87 orientation.setZ(msg.pose.pose.orientation.z);
88 orientation.setW(msg.pose.pose.orientation.w);
89
90 double roll{0.0};
91 double pitch{0.0};
92 double yaw{0.0};
93
94 tf2::Matrix3x3 matrix{orientation};
95 matrix.getRPY(roll, pitch, yaw);
96
97 const mot::CtrvState state{
98 units::length::meter_t{msg.pose.pose.position.x},
99 units::length::meter_t{msg.pose.pose.position.y},
100 units::velocity::meters_per_second_t{msg.twist.twist.linear.x},
101 mot::Angle{units::angle::radian_t{yaw}},
102 units::angular_velocity::radians_per_second_t{msg.twist.twist.angular.z}};
103
104 mot::CtrvStateCovariance covariance = mot::CtrvStateCovariance::Zero();
105 covariance(0, 0) = msg.pose.covariance.at(0);
106 covariance(1, 1) = msg.pose.covariance.at(7);
107 covariance(2, 2) = msg.twist.covariance.at(0);
108 covariance(3, 3) = msg.pose.covariance.at(35);
109 covariance(4, 4) = msg.twist.covariance.at(35);
110
111 return mot::CtrvDetection{
112 timestamp, state, covariance, mot::Uuid{msg.id}, make_semantic_class(msg.semantic_class)};
113}

References make_semantic_class().

Referenced by make_detection().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ make_detection()

auto carma_cooperative_perception::make_detection ( const carma_cooperative_perception_interfaces::msg::Detection &  msg) -> Detection

Definition at line 155 of file multiple_object_tracker_component.cpp.

157{
158 switch (msg.motion_model) {
159 case msg.MOTION_MODEL_CTRV:
160 return make_ctrv_detection(msg);
161
162 case msg.MOTION_MODEL_CTRA:
163 return make_ctra_detection(msg);
164
165 case msg.MOTION_MODEL_CV:
166 throw std::runtime_error("unsupported motion model type '3: constant velocity (CV)'");
167 }
168
169 throw std::runtime_error("unkown motion model type '" + std::to_string(msg.motion_model) + "'");
170}
auto make_ctra_detection(const carma_cooperative_perception_interfaces::msg::Detection &msg) -> Detection
auto make_ctrv_detection(const carma_cooperative_perception_interfaces::msg::Detection &msg) -> Detection

References make_ctra_detection(), make_ctrv_detection(), and to_string().

Referenced by carma_cooperative_perception::MultipleObjectTrackerNode::store_new_detections().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ make_semantic_class()

auto carma_cooperative_perception::make_semantic_class ( std::size_t  numeric_value)

Definition at line 41 of file multiple_object_tracker_component.cpp.

42{
43 switch (numeric_value) {
44 case 0:
45 return mot::SemanticClass::kUnknown;
46 case 1:
47 return mot::SemanticClass::kSmallVehicle;
48 case 2:
49 return mot::SemanticClass::kLargeVehicle;
50 case 3:
51 return mot::SemanticClass::kPedestrian;
52 case 4:
53 return mot::SemanticClass::kMotorcycle;
54 }
55
56 return mot::SemanticClass::kUnknown;
57}

Referenced by make_ctra_detection(), and make_ctrv_detection().

Here is the caller graph for this function:

◆ ned_to_enu()

auto carma_cooperative_perception::ned_to_enu ( const PositionOffsetXYZ offset_ned)
noexcept

Definition at line 187 of file msg_conversion.cpp.

188{
189 auto offset_enu{offset_ned};
190
191 // NED to ENU: swap x and y axis and negate z axis
192 offset_enu.offset_x = offset_ned.offset_y;
193 offset_enu.offset_y = offset_ned.offset_x;
194
195 if (offset_enu.offset_z) {
196 offset_enu.offset_z.value() *= -1;
197 }
198
199 return offset_enu;
200}

Referenced by to_detection_list_msg().

Here is the caller graph for this function:

◆ operator!=()

constexpr auto carma_cooperative_perception::operator!= ( const UtmZone lhs,
const UtmZone rhs 
) -> bool
inlineconstexpr

Definition at line 40 of file utm_zone.hpp.

41{
42 return !(lhs == rhs);
43}

◆ operator+() [1/2]

constexpr auto carma_cooperative_perception::operator+ ( const UtmDisplacement displacement,
UtmCoordinate  coordinate 
) -> UtmCoordinate
inlineconstexpr

Addition operator overload.

Parameters
[in]displacementDisplacement from coordinate
[in]coordinatePosition represented in UTM coordinates
Returns
A new UtmCoordinate representing the new position

Definition at line 107 of file geodetic.hpp.

109{
110 return coordinate += displacement;
111}

◆ operator+() [2/2]

constexpr auto carma_cooperative_perception::operator+ ( UtmCoordinate  coordinate,
const UtmDisplacement displacement 
) -> UtmCoordinate
inlineconstexpr

Addition operator overload.

Parameters
[in]coordinatePosition represented in UTM coordinates
[in]displacementDisplacement form coordinate
Returns
A new UtmCoordinate representing the new position

Definition at line 93 of file geodetic.hpp.

95{
96 return coordinate += displacement;
97}

◆ operator+=()

constexpr auto carma_cooperative_perception::operator+= ( UtmCoordinate coordinate,
const UtmDisplacement displacement 
) -> UtmCoordinate &
inlineconstexpr

Addition-assignment operator overload.

Parameters
[in]coordinatePosition represented in UTM coordinates
[in]displacementDisplacement from coordinate
Returns
Reference to the coordinate's updated position

Definition at line 75 of file geodetic.hpp.

77{
78 coordinate.easting += displacement.easting;
79 coordinate.northing += displacement.northing;
80 coordinate.elevation += displacement.elevation;
81
82 return coordinate;
83}

References carma_cooperative_perception::UtmCoordinate::easting.

◆ operator-() [1/2]

constexpr auto carma_cooperative_perception::operator- ( const UtmDisplacement displacement,
UtmCoordinate  coordinate 
) -> UtmCoordinate
inlineconstexpr

Subtraction operator overload.

Parameters
[in]displacementDisplacement from coordinate
[in]coordinatePosition represented in UTM coordinates
Returns
A new UtmCoordinate representing the new position

Definition at line 153 of file geodetic.hpp.

155{
156 return coordinate -= displacement;
157}

◆ operator-() [2/2]

constexpr auto carma_cooperative_perception::operator- ( UtmCoordinate  coordinate,
const UtmDisplacement displacement 
) -> UtmCoordinate
inlineconstexpr

Subtraction operator overload.

Parameters
[in]coordinatePosition represented in UTM coordinates
[in]displacementDisplacement form coordinate
Returns
A new UtmCoordinate representing the new position

Definition at line 139 of file geodetic.hpp.

141{
142 return coordinate -= displacement;
143}

◆ operator-=()

constexpr auto carma_cooperative_perception::operator-= ( UtmCoordinate coordinate,
const UtmDisplacement displacement 
) -> UtmCoordinate &
inlineconstexpr

Subtraction-assignment operator overload.

Parameters
[in]coordinatePosition represented in UTM coordinates
[in]displacementDisplacement from coordinate
Returns
Reference to the coordinate's updated position

Definition at line 121 of file geodetic.hpp.

123{
124 coordinate.easting += displacement.easting;
125 coordinate.northing += displacement.northing;
126 coordinate.elevation += displacement.elevation;
127
128 return coordinate;
129}

References carma_cooperative_perception::UtmCoordinate::easting.

◆ operator==()

constexpr auto carma_cooperative_perception::operator== ( const UtmZone lhs,
const UtmZone rhs 
) -> bool
inlineconstexpr

Definition at line 35 of file utm_zone.hpp.

36{
37 return lhs.number == rhs.number && lhs.hemisphere == rhs.hemisphere;
38}

◆ predict_track_states()

static auto carma_cooperative_perception::predict_track_states ( std::vector< Track tracks,
units::time::second_t  end_time 
)
static

Definition at line 454 of file multiple_object_tracker_component.cpp.

455{
456 for (auto & track : tracks) {
457 mot::propagate_to_time(track, end_time, mot::default_unscented_transform);
458 }
459
460 return tracks;
461}

Referenced by carma_cooperative_perception::MultipleObjectTrackerNode::execute_pipeline().

Here is the caller graph for this function:

◆ project_to_carma_map()

auto carma_cooperative_perception::project_to_carma_map ( const Wgs84Coordinate coordinate,
std::string_view  proj_string 
) -> MapCoordinate

Definition at line 55 of file geodetic.cpp.

57{
58 gsl::owner<PJ_CONTEXT *> context = proj_context_create();
59 proj_log_level(context, PJ_LOG_NONE);
60
61 if (!context) {
62 const std::string error_string{proj_errno_string(proj_context_errno(context))};
63 throw std::invalid_argument("Could not create PROJ context: " + error_string + '.');
64 }
65
66 gsl ::owner<PJ *> transformation =
67 proj_create_crs_to_crs(context, "EPSG:4326", proj_string.data(), nullptr);
68
69 if (!transformation) {
70 const std::string error_string{proj_errno_string(proj_context_errno(context))};
71 throw std::invalid_argument("Could not create PROJ transform: " + error_string + '.');
72 }
73
74 const auto coord_wgs84 = proj_coord(
77 const auto coord_projected = proj_trans(transformation, PJ_FWD, coord_wgs84);
78
79 proj_destroy(transformation);
80 proj_context_destroy(context);
81
82 return {
83 units::length::meter_t{coord_projected.enu.e}, units::length::meter_t{coord_projected.enu.n},
84 units::length::meter_t{coordinate.elevation}};
85}

References remove_units().

Referenced by to_detection_list_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ project_to_utm()

auto carma_cooperative_perception::project_to_utm ( const Wgs84Coordinate coordinate) -> UtmCoordinate

Projects a Wgs84Coordinate to its corresponding UTM zone.

Parameters
[in]coordinatePosition represented in WGS-84 coordinates
Returns
Coordinate's position represented in UTM coordinates

Definition at line 87 of file geodetic.cpp.

88{
89 gsl::owner<PJ_CONTEXT *> context = proj_context_create();
90 proj_log_level(context, PJ_LOG_NONE);
91
92 if (context == nullptr) {
93 const std::string error_string{proj_errno_string(proj_context_errno(context))};
94 throw std::invalid_argument("Could not create PROJ context: " + error_string + '.');
95 }
96
97 const auto utm_zone{calculate_utm_zone(coordinate)};
98 std::string proj_string{"+proj=utm +zone=" + std::to_string(utm_zone.number) + " +datum=WGS84"};
99
100 if (utm_zone.hemisphere == Hemisphere::kSouth) {
101 proj_string += " +south";
102 }
103
104 gsl ::owner<PJ *> utm_transformation =
105 proj_create_crs_to_crs(context, "EPSG:4326", proj_string.c_str(), nullptr);
106
107 if (utm_transformation == nullptr) {
108 const std::string error_string{proj_errno_string(proj_context_errno(context))};
109 throw std::invalid_argument("Could not create PROJ transform: " + error_string + '.');
110 }
111
112 auto coord_wgs84 = proj_coord(
115 auto coord_utm = proj_trans(utm_transformation, PJ_FWD, coord_wgs84);
116
117 proj_destroy(utm_transformation);
118 proj_context_destroy(context);
119
120 return {
121 utm_zone, units::length::meter_t{coord_utm.enu.e}, units::length::meter_t{coord_utm.enu.n},
122 units::length::meter_t{coordinate.elevation}};
123}
auto calculate_utm_zone(const Wgs84Coordinate &coordinate) -> UtmZone
Get the UTM zone number from a WGS-84 coordinate.
Definition: geodetic.cpp:27

References calculate_utm_zone(), kSouth, remove_units(), and to_string().

Referenced by transform_from_map_to_utm().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ remove_units()

◆ semantic_class_to_numeric_value()

auto carma_cooperative_perception::semantic_class_to_numeric_value ( mot::SemanticClass  semantic_class)

Definition at line 59 of file multiple_object_tracker_component.cpp.

60{
61 switch (semantic_class) {
62 case mot::SemanticClass::kUnknown:
63 return 0;
64 case mot::SemanticClass::kSmallVehicle:
65 return 1;
66 case mot::SemanticClass::kLargeVehicle:
67 return 2;
68 case mot::SemanticClass::kPedestrian:
69 return 3;
70 case mot::SemanticClass::kMotorcycle:
71 return 4;
72 }
73
74 return 0;
75}

Referenced by to_ros_msg().

Here is the caller graph for this function:

◆ temporally_align_detections()

static auto carma_cooperative_perception::temporally_align_detections ( std::vector< Detection > &  detections,
units::time::second_t  end_time 
) -> void
static

Definition at line 446 of file multiple_object_tracker_component.cpp.

448{
449 for (auto & detection : detections) {
450 mot::propagate_to_time(detection, end_time, mot::default_unscented_transform);
451 }
452}

Referenced by carma_cooperative_perception::MultipleObjectTrackerNode::execute_pipeline().

Here is the caller graph for this function:

◆ to_ddate_time_msg()

auto carma_cooperative_perception::to_ddate_time_msg ( const builtin_interfaces::msg::Time &  builtin_time) -> j2735_v2x_msgs::msg::DDateTime

Definition at line 202 of file msg_conversion.cpp.

204{
205 j2735_v2x_msgs::msg::DDateTime ddate_time_output;
206
207 // Add the time components from epoch seconds
208 boost::posix_time::ptime posix_time = boost::posix_time::from_time_t(builtin_time.sec) +
209 boost::posix_time::nanosec(builtin_time.nanosec);
210
211 const auto time_stamp_year = posix_time.date().year();
212 const auto time_stamp_month = posix_time.date().month();
213 const auto time_stamp_day = posix_time.date().day();
214
215 const auto hours_of_day = posix_time.time_of_day().hours();
216 const auto minutes_of_hour = posix_time.time_of_day().minutes();
217 const auto seconds_of_minute = posix_time.time_of_day().seconds();
218
219 ddate_time_output.presence_vector = 0;
220
221 ddate_time_output.presence_vector |= j2735_v2x_msgs::msg::DDateTime::YEAR;
222 ddate_time_output.year.year = time_stamp_year;
223 ddate_time_output.presence_vector |= j2735_v2x_msgs::msg::DDateTime::MONTH;
224 ddate_time_output.month.month = time_stamp_month;
225 ddate_time_output.presence_vector |= j2735_v2x_msgs::msg::DDateTime::DAY;
226 ddate_time_output.day.day = time_stamp_day;
227 ddate_time_output.presence_vector |= j2735_v2x_msgs::msg::DDateTime::HOUR;
228 ddate_time_output.hour.hour = hours_of_day;
229 ddate_time_output.presence_vector |= j2735_v2x_msgs::msg::DDateTime::MINUTE;
230 ddate_time_output.minute.minute = minutes_of_hour;
231 ddate_time_output.presence_vector |= j2735_v2x_msgs::msg::DDateTime::SECOND;
232 ddate_time_output.second.millisecond = seconds_of_minute;
233
234 return ddate_time_output;
235}

Referenced by to_sdsm_msg().

Here is the caller graph for this function:

◆ to_detected_object_data_msg()

auto carma_cooperative_perception::to_detected_object_data_msg ( const carma_perception_msgs::msg::ExternalObject &  external_object,
const std::shared_ptr< lanelet::projection::LocalFrameProjector > &  map_projection 
) -> carma_v2x_msgs::msg::DetectedObjectData

Definition at line 882 of file msg_conversion.cpp.

886{
887 carma_v2x_msgs::msg::DetectedObjectData detected_object_data;
888 detected_object_data.presence_vector = 0;
889
890 carma_v2x_msgs::msg::DetectedObjectCommonData detected_object_common_data;
891 detected_object_common_data.presence_vector = 0;
892
893 // common data //////////
894
895 // obj_type_conf - convert from percentile, cast to proper uint type
896 if (external_object.presence_vector & external_object.OBJECT_TYPE_PRESENCE_VECTOR) {
897 detected_object_common_data.obj_type_cfd.classification_confidence =
898 static_cast<std::uint8_t>(external_object.confidence * 100);
899 }
900
901 // detected_id - cast proper type
902 if (external_object.presence_vector & external_object.ID_PRESENCE_VECTOR) {
903 detected_object_common_data.detected_id.object_id =
904 static_cast<std::uint16_t>(external_object.id);
905 }
906
907 // pos - Add offset to ref_pos to get object position
908 // in map frame -> convert to WGS84 coordinates for sdsm
909
910 // To get offset: Subtract the external object pose from
911 // the current vehicle location given by the current_pose topic
912 if (external_object.presence_vector & external_object.POSE_PRESENCE_VECTOR) {
913 detected_object_common_data.pos.offset_x.object_distance =
914 static_cast<float>(external_object.pose.pose.position.x);
915 detected_object_common_data.pos.offset_y.object_distance =
916 static_cast<float>(external_object.pose.pose.position.y);
917 detected_object_common_data.pos.offset_z.object_distance =
918 static_cast<float>(external_object.pose.pose.position.z);
919 }
920
921 // speed/speed_z - convert vector velocity to scalar speed val given x/y components
922 if (external_object.presence_vector & external_object.VELOCITY_PRESENCE_VECTOR) {
923 detected_object_common_data.speed.speed =
924 std::hypot(external_object.velocity.twist.linear.x, external_object.velocity.twist.linear.y);
925
926 detected_object_common_data.presence_vector |=
927 carma_v2x_msgs::msg::DetectedObjectCommonData::HAS_SPEED_Z;
928 detected_object_common_data.speed_z.speed = external_object.velocity.twist.linear.z;
929
930 // heading - convert ang vel to scale heading
931 lanelet::BasicPoint3d external_object_position{
932 external_object.pose.pose.position.x, external_object.pose.pose.position.y,
933 external_object.pose.pose.position.z};
934 // Get yaw from orientation
935 auto obj_orientation = external_object.pose.pose.orientation;
936 tf2::Quaternion q(obj_orientation.x, obj_orientation.y, obj_orientation.z, obj_orientation.w);
937 tf2::Matrix3x3 m(q);
938 double roll, pitch, yaw;
939 m.getRPY(roll, pitch, yaw);
940
941 detected_object_common_data.heading.heading =
942 remove_units(enu_orientation_to_true_heading(yaw, external_object_position, map_projection));
943 }
944
945 // optional data (determine based on object type)
946 // use object type struct for better control
947 carma_v2x_msgs::msg::DetectedObjectOptionalData detected_object_optional_data;
948
949 switch (external_object.object_type) {
950 case external_object.SMALL_VEHICLE:
951 detected_object_common_data.obj_type.object_type = j3224_v2x_msgs::msg::ObjectType::VEHICLE;
952
953 if (external_object.presence_vector & external_object.SIZE_PRESENCE_VECTOR) {
954 detected_object_optional_data.det_veh.presence_vector =
955 carma_v2x_msgs::msg::DetectedVehicleData::HAS_SIZE;
956 detected_object_optional_data.det_veh.presence_vector |=
957 carma_v2x_msgs::msg::DetectedVehicleData::HAS_HEIGHT;
958
959 detected_object_optional_data.det_veh.size.vehicle_width = external_object.size.y;
960 detected_object_optional_data.det_veh.size.vehicle_length = external_object.size.x;
961 detected_object_optional_data.det_veh.height.vehicle_height = external_object.size.z;
962 }
963 break;
964 case external_object.LARGE_VEHICLE:
965 detected_object_common_data.obj_type.object_type = j3224_v2x_msgs::msg::ObjectType::VEHICLE;
966
967 if (external_object.presence_vector & external_object.SIZE_PRESENCE_VECTOR) {
968 detected_object_optional_data.det_veh.presence_vector =
969 carma_v2x_msgs::msg::DetectedVehicleData::HAS_SIZE;
970 detected_object_optional_data.det_veh.presence_vector |=
971 carma_v2x_msgs::msg::DetectedVehicleData::HAS_HEIGHT;
972
973 detected_object_optional_data.det_veh.size.vehicle_width = external_object.size.y;
974 detected_object_optional_data.det_veh.size.vehicle_length = external_object.size.x;
975 detected_object_optional_data.det_veh.height.vehicle_height = external_object.size.z;
976 }
977 break;
978 case external_object.MOTORCYCLE:
979 detected_object_common_data.obj_type.object_type = j3224_v2x_msgs::msg::ObjectType::VEHICLE;
980
981 if (external_object.presence_vector & external_object.SIZE_PRESENCE_VECTOR) {
982 detected_object_optional_data.det_veh.presence_vector =
983 carma_v2x_msgs::msg::DetectedVehicleData::HAS_SIZE;
984 detected_object_optional_data.det_veh.presence_vector |=
985 carma_v2x_msgs::msg::DetectedVehicleData::HAS_HEIGHT;
986
987 detected_object_optional_data.det_veh.size.vehicle_width = external_object.size.y;
988 detected_object_optional_data.det_veh.size.vehicle_length = external_object.size.x;
989 detected_object_optional_data.det_veh.height.vehicle_height = external_object.size.z;
990 }
991 break;
992 case external_object.PEDESTRIAN:
993 detected_object_common_data.obj_type.object_type = j3224_v2x_msgs::msg::ObjectType::VRU;
994
995 detected_object_optional_data.det_vru.presence_vector =
996 carma_v2x_msgs::msg::DetectedVRUData::HAS_BASIC_TYPE;
997 detected_object_optional_data.det_vru.basic_type.type |=
998 j2735_v2x_msgs::msg::PersonalDeviceUserType::A_PEDESTRIAN;
999
1000 break;
1001 case external_object.UNKNOWN:
1002 default:
1003 detected_object_common_data.obj_type.object_type = j3224_v2x_msgs::msg::ObjectType::UNKNOWN;
1004
1005 if (external_object.presence_vector & external_object.SIZE_PRESENCE_VECTOR) {
1006 detected_object_optional_data.det_obst.obst_size.width.size_value = external_object.size.y;
1007 detected_object_optional_data.det_obst.obst_size.length.size_value = external_object.size.x;
1008
1009 detected_object_optional_data.det_obst.obst_size.presence_vector =
1010 carma_v2x_msgs::msg::ObstacleSize::HAS_HEIGHT;
1011 detected_object_optional_data.det_obst.obst_size.height.size_value = external_object.size.z;
1012 }
1013 }
1014
1015 detected_object_data.detected_object_common_data = std::move(detected_object_common_data);
1016 detected_object_data.detected_object_optional_data = std::move(detected_object_optional_data);
1017
1018 return detected_object_data;
1019}
auto enu_orientation_to_true_heading(double yaw, const lanelet::BasicPoint3d &obj_pose, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> units::angle::degree_t

References enu_orientation_to_true_heading(), and remove_units().

Referenced by to_sdsm_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_detection_list_msg() [1/2]

auto carma_cooperative_perception::to_detection_list_msg ( const carma_perception_msgs::msg::ExternalObjectList &  object_list,
const MotionModelMapping motion_model_mapping 
) -> carma_cooperative_perception_interfaces::msg::DetectionList

Definition at line 741 of file msg_conversion.cpp.

745{
746 carma_cooperative_perception_interfaces::msg::DetectionList detection_list;
747
748 std::transform(
749 std::cbegin(object_list.objects), std::cend(object_list.objects),
750 std::back_inserter(detection_list.detections),
751 [&motion_model_mapping = std::as_const(motion_model_mapping)](const auto & object) {
752 return to_detection_msg(object, motion_model_mapping);
753 });
754
755 return detection_list;
756}

◆ to_detection_list_msg() [2/2]

auto carma_cooperative_perception::to_detection_list_msg ( const carma_v2x_msgs::msg::SensorDataSharingMessage &  sdsm,
std::string_view  georeference,
bool  is_simulation,
const std::optional< SdsmToDetectionListConfig > &  conversion_adjustment 
) -> carma_cooperative_perception_interfaces::msg::DetectionList

Converts a carma_v2x_msgs::msg::SensorDataSharingMessage (SDSM) to carma_cooperative_perception_interfaces::msg::DetectionList format.

This function transforms data from the V2X SDSM format into the CARMA cooperative perception DetectionList format, handling the necessary coordinate transformations.

Important coordinate system transformations:

  • SDSM uses NED (North-East-Down) coordinate system for position offsets
  • SDSM heading is measured clockwise from true north (0° at north, 90° at east)
  • Output DetectionList uses ENU (East-North-Up) coordinate system
  • Output heading is converted to ENU yaw (0° at east, 90° at north)

The function performs the following key operations:

  1. Projects reference position from WGS84 to the local map frame
  2. Converts NED position offsets to ENU
  3. Handles heading conversion from true north to map grid
  4. Transforms detection confidence values to covariance values
  5. Maps object types to appropriate semantic classes
Parameters
sdsmThe input J3224 SDSM message containing detected objects
georeferenceString containing the georeference information for coordinate projection
is_simulationBoolean flag indicating if running in simulation mode (affects timestamps)
conversion_adjustmentOptional configuration for position and covariance adjustments
Returns
carma_cooperative_perception_interfaces::msg::DetectionList message containing the transformed detections in CARMA Platform format

Definition at line 575 of file msg_conversion.cpp.

579{
580 carma_cooperative_perception_interfaces::msg::DetectionList detection_list;
581 const auto ref_pos_3d{Position3D::from_msg(sdsm.ref_pos)};
582
583 units::length::meter_t elevation(0.0);
584 if(ref_pos_3d.elevation){
585 elevation = ref_pos_3d.elevation.value();
586 }
587 const Wgs84Coordinate ref_pos_wgs84{
588 ref_pos_3d.latitude, ref_pos_3d.longitude, elevation};
589
590 const auto ref_pos_map{project_to_carma_map(ref_pos_wgs84, georeference)};
591
592 for (const auto & object_data : sdsm.objects.detected_object_data) {
593 const auto common_data{object_data.detected_object_common_data};
594
596 detection.header.frame_id = "map";
597
598 const auto detection_time{calc_detection_time_stamp(
599 DDateTime::from_msg(sdsm.sdsm_time_stamp),
600 MeasurementTimeOffset::from_msg(common_data.measurement_time))};
601
602 detection.header.stamp = to_time_msg(detection_time, is_simulation);
603
604 detection.id = fmt::format("{}-{}",
606 common_data.detected_id.object_id);
607
608 const auto pos_offset_enu{ned_to_enu(PositionOffsetXYZ::from_msg(common_data.pos))};
609 detection.pose.pose.position = to_position_msg(MapCoordinate{
610 ref_pos_map.easting + pos_offset_enu.offset_x, ref_pos_map.northing + pos_offset_enu.offset_y,
611 ref_pos_map.elevation + pos_offset_enu.offset_z.value_or(units::length::meter_t{0.0})});
612
613 // Adjust object's position to match vector map coordinates as sensor calibrations are not
614 // always reliable
615 if (conversion_adjustment && conversion_adjustment.value().adjust_pose)
616 {
617 detection.pose.pose.position.x += conversion_adjustment.value().x_offset;
618 detection.pose.pose.position.y += conversion_adjustment.value().y_offset;
619 }
620
621 const auto true_heading{units::angle::degree_t{Heading::from_msg(common_data.heading).heading}};
622
623 // Note: This should really use the detection's WGS-84 position, so the
624 // convergence will be off slightly. TODO
625 const units::angle::degree_t grid_convergence{
626 calculate_grid_convergence(ref_pos_wgs84, georeference)};
627
628 const auto grid_heading{true_heading - grid_convergence};
629 const auto enu_yaw{heading_to_enu_yaw(grid_heading)};
630
631 tf2::Quaternion quat_tf;
632
633 if (conversion_adjustment && conversion_adjustment.value().adjust_pose)
634 {
635 // Adjust object's heading to match vector map coordinates as sensor calibrations are not
636 // always reliable
637 auto yaw_with_offset = units::angle::radian_t{enu_yaw} +
638 units::angle::radian_t{units::angle::degree_t{conversion_adjustment.value().yaw_offset}};
639 auto new_yaw = std::fmod(remove_units(yaw_with_offset) + 2 * M_PI, 2 * M_PI);
640 quat_tf.setRPY(0, 0, new_yaw);
641 }
642 else
643 {
644 // No adjustment needed
645 quat_tf.setRPY(0, 0, remove_units(units::angle::radian_t{enu_yaw}));
646 }
647
648 detection.pose.pose.orientation = tf2::toMsg(quat_tf);
649
650 const auto speed{Speed::from_msg(common_data.speed)};
651 detection.twist.twist.linear.x =
652 remove_units(units::velocity::meters_per_second_t{speed.speed});
653
654 if (!common_data.speed_z.unavailable){
655 const auto speed_z{Speed::from_msg(common_data.speed_z)};
656 detection.twist.twist.linear.z =
657 remove_units(units::velocity::meters_per_second_t{speed_z.speed});
658 }
659 else{
660 detection.twist.twist.linear.z = remove_units(units::velocity::meters_per_second_t{0.0});
661 }
662
663 // NOTE: common_data.accel_4_way.longitudinal, lateral, vert not supported
664 // and not needed at the moment for multiple object tracking algorithm
665 // Having non-zero yaw_rate value means available
666 if(static_cast<bool>(common_data.accel_4_way.yaw_rate)){
667 const auto accel_set{AccelerationSet4Way::from_msg(common_data.accel_4_way)};
668 detection.twist.twist.angular.z =
669 remove_units(units::angular_velocity::degrees_per_second_t{accel_set.yaw_rate});
670 }
671 else{
672 detection.twist.twist.angular.z = 0.0;
673 }
674
675 convert_covariances(detection, common_data, conversion_adjustment);
676
677 convert_object_type(detection, common_data.obj_type);
678
679 detection_list.detections.push_back(std::move(detection));
680 }
681
682 return detection_list;
683}
void convert_covariances(carma_cooperative_perception_interfaces::msg::Detection &detection, const carma_v2x_msgs::msg::DetectedObjectCommonData &common_data, const std::optional< SdsmToDetectionListConfig > &conversion_adjustment)
auto to_position_msg(const MapCoordinate &position_map) -> geometry_msgs::msg::Point
auto calc_detection_time_stamp(DDateTime d_date_time, const MeasurementTimeOffset &offset) -> DDateTime
std::variant< multiple_object_tracking::CtrvDetection, multiple_object_tracking::CtraDetection > Detection
auto project_to_carma_map(const Wgs84Coordinate &coordinate, std::string_view proj_string) -> MapCoordinate
Definition: geodetic.cpp:55
auto to_time_msg(const DDateTime &d_date_time, bool is_simulation) -> builtin_interfaces::msg::Time
auto ned_to_enu(const PositionOffsetXYZ &offset_ned) noexcept
void convert_object_type(carma_cooperative_perception_interfaces::msg::Detection &detection, const j3224_v2x_msgs::msg::ObjectType &j3224_obj_type)
auto heading_to_enu_yaw(const units::angle::degree_t &heading) -> units::angle::degree_t

References calc_detection_time_stamp(), calculate_grid_convergence(), convert_covariances(), convert_object_type(), carma_cooperative_perception::MapCoordinate::easting, carma_cooperative_perception::AccelerationSet4Way::from_msg(), carma_cooperative_perception::DDateTime::from_msg(), carma_cooperative_perception::Heading::from_msg(), carma_cooperative_perception::Position3D::from_msg(), carma_cooperative_perception::Speed::from_msg(), carma_cooperative_perception::MeasurementTimeOffset::from_msg(), carma_cooperative_perception::PositionOffsetXYZ::from_msg(), heading_to_enu_yaw(), carma_cooperative_perception::Wgs84Coordinate::latitude, ned_to_enu(), project_to_carma_map(), remove_units(), to_position_msg(), to_string(), and to_time_msg().

Referenced by carma_cooperative_perception::ExternalObjectListToDetectionListNode::publish_as_detection_list(), and carma_cooperative_perception::SdsmToDetectionListNode::sdsm_msg_callback().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_detection_msg()

auto carma_cooperative_perception::to_detection_msg ( const carma_perception_msgs::msg::ExternalObject &  object,
const MotionModelMapping motion_model_mapping 
) -> carma_cooperative_perception_interfaces::msg::Detection

Definition at line 685 of file msg_conversion.cpp.

689{
691
692 detection.header = object.header;
693
694 if (object.presence_vector & object.BSM_ID_PRESENCE_VECTOR) {
695 detection.id = "";
696 std::transform(
697 std::cbegin(object.bsm_id), std::cend(object.bsm_id), std::back_inserter(detection.id),
698 [](const auto & i) { return i + '0'; });
699 }
700
701 if (object.presence_vector & object.ID_PRESENCE_VECTOR) {
702 detection.id += '-' + std::to_string(object.id);
703 }
704
705 if (object.presence_vector & object.POSE_PRESENCE_VECTOR) {
706 detection.pose = object.pose;
707 }
708
709 if (object.presence_vector & object.VELOCITY_PRESENCE_VECTOR) {
710 detection.twist = object.velocity;
711 }
712
713 if (object.presence_vector & object.OBJECT_TYPE_PRESENCE_VECTOR) {
714 switch (object.object_type) {
715 case object.SMALL_VEHICLE:
716 detection.motion_model = motion_model_mapping.small_vehicle_model;
717 detection.semantic_class = detection.SEMANTIC_CLASS_SMALL_VEHICLE;
718 break;
719 case object.LARGE_VEHICLE:
720 detection.motion_model = motion_model_mapping.large_vehicle_model;
721 detection.semantic_class = detection.SEMANTIC_CLASS_LARGE_VEHICLE;
722 break;
723 case object.MOTORCYCLE:
724 detection.motion_model = motion_model_mapping.motorcycle_model;
725 detection.semantic_class = detection.SEMANTIC_CLASS_MOTORCYCLE;
726 break;
727 case object.PEDESTRIAN:
728 detection.motion_model = motion_model_mapping.pedestrian_model;
729 detection.semantic_class = detection.SEMANTIC_CLASS_PEDESTRIAN;
730 break;
731 case object.UNKNOWN:
732 default:
733 detection.motion_model = motion_model_mapping.unknown_model;
734 detection.semantic_class = detection.SEMANTIC_CLASS_UNKNOWN;
735 }
736 }
737
738 return detection;
739}
std::string to_string(const std::vector< std::uint8_t > &temporary_id)

References process_bag::i, and to_string().

Here is the call graph for this function:

◆ to_external_object_list_msg()

auto carma_cooperative_perception::to_external_object_list_msg ( const carma_cooperative_perception_interfaces::msg::TrackList &  track_list) -> carma_perception_msgs::msg::ExternalObjectList

Definition at line 829 of file msg_conversion.cpp.

832{
833 carma_perception_msgs::msg::ExternalObjectList external_object_list;
834
835 for (const auto & track : track_list.tracks) {
836 external_object_list.objects.push_back(to_external_object_msg(track));
837 }
838
839 return external_object_list;
840}
auto to_external_object_msg(const carma_cooperative_perception_interfaces::msg::Track &track) -> carma_perception_msgs::msg::ExternalObject

References to_external_object_msg().

Referenced by carma_cooperative_perception::TrackListToExternalObjectListNode::publish_as_external_object_list().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_external_object_msg()

auto carma_cooperative_perception::to_external_object_msg ( const carma_cooperative_perception_interfaces::msg::Track &  track) -> carma_perception_msgs::msg::ExternalObject

Definition at line 758 of file msg_conversion.cpp.

760{
761 carma_perception_msgs::msg::ExternalObject external_object;
762 external_object.header = track.header;
763 external_object.presence_vector = 0;
764
765 const auto to_numeric_id = [](std::string string_id) -> std::optional<uint32_t> {
766 auto non_digit_start = std::remove_if(
767 std::begin(string_id), std::end(string_id),
768 [](const auto & ch) { return !std::isdigit(ch); });
769
770 std::uint32_t numeric_id;
771 const auto digit_substr_size{std::distance(std::begin(string_id), non_digit_start)};
772 if (
773 std::from_chars(string_id.c_str(), string_id.c_str() + digit_substr_size, numeric_id).ec ==
774 std::errc{}) {
775 return numeric_id;
776 }
777
778 return std::nullopt;
779 };
780
781 if (const auto numeric_id{to_numeric_id(track.id)}) {
782 external_object.presence_vector |= external_object.ID_PRESENCE_VECTOR;
783 external_object.id = numeric_id.value();
784 } else {
785 external_object.presence_vector &= ~external_object.ID_PRESENCE_VECTOR;
786 }
787
788 external_object.presence_vector |= external_object.POSE_PRESENCE_VECTOR;
789 external_object.pose = track.pose;
790
791 external_object.presence_vector |= external_object.VELOCITY_PRESENCE_VECTOR;
792
793 const auto track_longitudinal_velocity{track.twist.twist.linear.x};
794 const auto track_orientation = track.pose.pose.orientation;
795
796 tf2::Quaternion q(
797 track_orientation.x, track_orientation.y, track_orientation.z, track_orientation.w);
798 tf2::Matrix3x3 m(q);
799 double roll, pitch, yaw;
800 m.getRPY(roll, pitch, yaw);
801
802 external_object.velocity.twist.linear.x = track_longitudinal_velocity * std::cos(yaw);
803 external_object.velocity.twist.linear.y = track_longitudinal_velocity * std::sin(yaw);
804
805 external_object.object_type = track.semantic_class;
806
807 external_object.presence_vector |= external_object.OBJECT_TYPE_PRESENCE_VECTOR;
808 switch (track.semantic_class) {
809 case track.SEMANTIC_CLASS_SMALL_VEHICLE:
810 external_object.object_type = external_object.SMALL_VEHICLE;
811 break;
812 case track.SEMANTIC_CLASS_LARGE_VEHICLE:
813 external_object.object_type = external_object.LARGE_VEHICLE;
814 break;
815 case track.SEMANTIC_CLASS_MOTORCYCLE:
816 external_object.object_type = external_object.MOTORCYCLE;
817 break;
818 case track.SEMANTIC_CLASS_PEDESTRIAN:
819 external_object.object_type = external_object.PEDESTRIAN;
820 break;
821 case track.SEMANTIC_CLASS_UNKNOWN:
822 default:
823 external_object.object_type = external_object.UNKNOWN;
824 }
825
826 return external_object;
827}

Referenced by to_external_object_list_msg().

Here is the caller graph for this function:

◆ to_position_msg() [1/2]

auto carma_cooperative_perception::to_position_msg ( const MapCoordinate position_map) -> geometry_msgs::msg::Point

Definition at line 271 of file msg_conversion.cpp.

272{
273 geometry_msgs::msg::Point msg;
274
275 msg.x = remove_units(position_map.easting);
276 msg.y = remove_units(position_map.northing);
277 msg.z = remove_units(position_map.elevation);
278
279 return msg;
280}

References remove_units().

Here is the call graph for this function:

◆ to_position_msg() [2/2]

auto carma_cooperative_perception::to_position_msg ( const UtmCoordinate position_utm) -> geometry_msgs::msg::Point

Definition at line 260 of file msg_conversion.cpp.

261{
262 geometry_msgs::msg::Point msg;
263
264 msg.x = remove_units(position_utm.easting);
265 msg.y = remove_units(position_utm.northing);
266 msg.z = remove_units(position_utm.elevation);
267
268 return msg;
269}

References remove_units().

Referenced by to_detection_list_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_ros_msg() [1/3]

static auto carma_cooperative_perception::to_ros_msg ( const mot::CtraTrack &  track)
static

Definition at line 172 of file multiple_object_tracker_component.cpp.

173{
175
176 msg.header.stamp.sec = mot::remove_units(units::math::floor(track.timestamp));
177 msg.header.stamp.nanosec = mot::remove_units(
178 units::time::nanosecond_t{units::math::fmod(track.timestamp, units::time::second_t{1.0})});
179 msg.header.frame_id = "map";
180
181 msg.id = track.uuid.value();
182 msg.motion_model = msg.MOTION_MODEL_CTRA;
183 msg.pose.pose.position.x = mot::remove_units(track.state.position_x);
184 msg.pose.pose.position.y = mot::remove_units(track.state.position_y);
185
186 tf2::Quaternion orientation;
187 orientation.setRPY(0, 0, mot::remove_units(track.state.yaw.get_angle()));
188 msg.pose.pose.orientation.x = orientation.getX();
189 msg.pose.pose.orientation.y = orientation.getY();
190 msg.pose.pose.orientation.z = orientation.getZ();
191 msg.pose.pose.orientation.w = orientation.getW();
192
193 msg.twist.twist.linear.x = mot::remove_units(track.state.velocity);
194 msg.twist.twist.angular.z = mot::remove_units(track.state.yaw_rate);
195
196 msg.accel.accel.linear.x = mot::remove_units(track.state.acceleration);
197
198 msg.semantic_class = semantic_class_to_numeric_value(mot::get_semantic_class(track));
199
200 return msg;
201}
auto semantic_class_to_numeric_value(mot::SemanticClass semantic_class)
std::variant< multiple_object_tracking::CtrvTrack, multiple_object_tracking::CtraTrack > Track

References remove_units(), and semantic_class_to_numeric_value().

Referenced by to_ros_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_ros_msg() [2/3]

static auto carma_cooperative_perception::to_ros_msg ( const mot::CtrvTrack &  track)
static

Definition at line 203 of file multiple_object_tracker_component.cpp.

204{
206
207 msg.header.stamp.sec = mot::remove_units(units::math::floor(track.timestamp));
208 msg.header.stamp.nanosec = mot::remove_units(
209 units::time::nanosecond_t{units::math::fmod(track.timestamp, units::time::second_t{1.0})});
210 msg.header.frame_id = "map";
211
212 msg.id = track.uuid.value();
213 msg.motion_model = msg.MOTION_MODEL_CTRV;
214 msg.pose.pose.position.x = mot::remove_units(track.state.position_x);
215 msg.pose.pose.position.y = mot::remove_units(track.state.position_y);
216
217 tf2::Quaternion orientation;
218 orientation.setRPY(0, 0, mot::remove_units(track.state.yaw.get_angle()));
219 msg.pose.pose.orientation.x = orientation.getX();
220 msg.pose.pose.orientation.y = orientation.getY();
221 msg.pose.pose.orientation.z = orientation.getZ();
222 msg.pose.pose.orientation.w = orientation.getW();
223
224 msg.twist.twist.linear.x = mot::remove_units(track.state.velocity);
225 msg.twist.twist.angular.z = mot::remove_units(track.state.yaw_rate);
226
227 msg.semantic_class = semantic_class_to_numeric_value(mot::get_semantic_class(track));
228
229 return msg;
230}

References remove_units(), and semantic_class_to_numeric_value().

Here is the call graph for this function:

◆ to_ros_msg() [3/3]

static auto carma_cooperative_perception::to_ros_msg ( const Track track)
static

Definition at line 232 of file multiple_object_tracker_component.cpp.

233{
234 static constexpr mot::Visitor visitor{
235 [](const mot::CtrvTrack & t) { return to_ros_msg(t); },
236 [](const mot::CtraTrack & t) { return to_ros_msg(t); },
237 [](const auto &) {
238 // Currently on support CTRV and CTRA
239 throw std::runtime_error{"cannot make ROS 2 message from track type"};
240 }};
241
242 return std::visit(visitor, track);
243}
static auto to_ros_msg(const Track &track)

References to_ros_msg().

Referenced by carma_cooperative_perception::MultipleObjectTrackerNode::execute_pipeline().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_sdsm_msg()

auto carma_cooperative_perception::to_sdsm_msg ( const carma_perception_msgs::msg::ExternalObjectList &  external_object_list,
const geometry_msgs::msg::PoseStamped &  current_pose,
const std::shared_ptr< lanelet::projection::LocalFrameProjector > &  map_projection 
) -> carma_v2x_msgs::msg::SensorDataSharingMessage

Definition at line 842 of file msg_conversion.cpp.

847{
848 carma_v2x_msgs::msg::SensorDataSharingMessage sdsm;
849 carma_v2x_msgs::msg::DetectedObjectList detected_object_list;
850
851 sdsm.sdsm_time_stamp = to_ddate_time_msg(external_object_list.header.stamp);
852
853 sdsm.ref_pos = transform_pose_from_map_to_wgs84(current_pose, map_projection);
854
855 // Convert external objects within the list to detected_object_data
856 for (const auto & external_object : external_object_list.objects) {
857 auto sdsm_detected_object = to_detected_object_data_msg(external_object, map_projection);
858
859 // Calculate the time offset between individual objects and the respective SDSM container msg
860 sdsm_detected_object.detected_object_common_data.measurement_time =
861 calc_sdsm_time_offset(external_object.header.stamp, external_object.header.stamp);
862
863 // Calculate the position offset from the current reference pose (in m)
864 sdsm_detected_object.detected_object_common_data.pos =
865 calc_relative_position(current_pose, sdsm_detected_object.detected_object_common_data.pos);
866
867 detected_object_list.detected_object_data.push_back(sdsm_detected_object);
868 }
869
870 std::vector<uint8_t> id = {0x00, 0x00, 0x00, 0x01};
871 sdsm.source_id.id = id;
872 sdsm.equipment_type.equipment_type = j3224_v2x_msgs::msg::EquipmentType::OBU;
873 sdsm.ref_pos_xy_conf.semi_major = j2735_v2x_msgs::msg::PositionalAccuracy::ACCURACY_UNAVAILABLE;
874 sdsm.ref_pos_xy_conf.semi_minor = j2735_v2x_msgs::msg::PositionalAccuracy::ACCURACY_UNAVAILABLE;
875 sdsm.ref_pos_xy_conf.orientation =
876 j2735_v2x_msgs::msg::PositionalAccuracy::ACCURACY_ORIENTATION_UNAVAILABLE;
877 sdsm.objects = detected_object_list;
878
879 return sdsm;
880}
auto calc_sdsm_time_offset(const builtin_interfaces::msg::Time &external_object_list_time, const builtin_interfaces::msg::Time &external_object_time) -> carma_v2x_msgs::msg::MeasurementTimeOffset
auto to_ddate_time_msg(const builtin_interfaces::msg::Time &builtin_time) -> j2735_v2x_msgs::msg::DDateTime
auto to_detected_object_data_msg(const carma_perception_msgs::msg::ExternalObject &external_object, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> carma_v2x_msgs::msg::DetectedObjectData
auto calc_relative_position(const geometry_msgs::msg::PoseStamped &current_pose, const carma_v2x_msgs::msg::PositionOffsetXYZ &detected_object_data) -> carma_v2x_msgs::msg::PositionOffsetXYZ
auto transform_pose_from_map_to_wgs84(const geometry_msgs::msg::PoseStamped &source_pose, const std::shared_ptr< lanelet::projection::LocalFrameProjector > &map_projection) -> carma_v2x_msgs::msg::Position3D

References calc_relative_position(), calc_sdsm_time_offset(), to_ddate_time_msg(), to_detected_object_data_msg(), and transform_pose_from_map_to_wgs84().

Referenced by carma_cooperative_perception::ExternalObjectListToSdsmNode::publish_as_sdsm().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_string() [1/2]

std::string carma_cooperative_perception::to_string ( const std::vector< std::uint8_t > &  temporary_id)

Definition at line 353 of file msg_conversion.cpp.

353 {
354 std::string str;
355 str.reserve(2 * std::size(temporary_id)); // Two hex characters per octet string
356
357 std::array<char, 2> buffer;
358 for (const auto & octet_string : temporary_id) {
359 std::to_chars(std::begin(buffer), std::end(buffer), octet_string, 16);
360 str.push_back(std::toupper(std::get<0>(buffer)));
361 str.push_back(std::toupper(std::get<1>(buffer)));
362 }
363
364 return str;
365};

References create_two_lane_map::str.

Referenced by to_detection_msg().

Here is the caller graph for this function:

◆ to_string() [2/2]

auto carma_cooperative_perception::to_string ( const UtmZone zone) -> std::string

Definition at line 21 of file utm_zone.cpp.

22{
23 if (zone.hemisphere == Hemisphere::kNorth) {
24 return std::to_string(zone.number) + "N";
25 }
26
27 return std::to_string(zone.number) + "S";
28}

References kNorth, and to_string().

Referenced by cooperative_lanechange::CooperativeLaneChangePlugin::add_trajectory_to_response(), carma_wm_ctrl::WMBroadcaster::addScheduleFromMsg(), route_following_plugin::RouteFollowingPlugin::addStopAndWaitAtRouteEnd(), lci_strategic_plugin::LCIStrategicPlugin::boundary_accel_nocruise_maxspeed_decel(), lci_strategic_plugin::LCIStrategicPlugin::boundary_accel_or_decel_complete_upper(), lci_strategic_plugin::LCIStrategicPlugin::boundary_decel_nocruise_minspeed_accel_complete(), cooperative_lanechange::CooperativeLaneChangePlugin::bsmIDtoString(), yield_plugin::YieldPlugin::bsmIDtoString(), calculate_grid_convergence(), mobilitypath_visualizer::MobilityPathVisualizer::callbackMobilityPath(), lci_strategic_plugin::LCIStrategicPlugin::canArriveAtGreenWithCertainty(), platooning_strategic_ihp::PlatooningManager::changeFromFollowerToLeader(), mobilitypath_publisher::MobilityPathPublication::compose_mobility_header(), lci_strategic_plugin::LCIStrategicPlugin::composeIntersectionTransitMessage(), sci_strategic_plugin::SCIStrategicPlugin::composeIntersectionTransitMessage(), mobilitypath_visualizer::MobilityPathVisualizer::composeLabelMarker(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::composeLaneChangeManeuverMessage(), route_following_plugin::RouteFollowingPlugin::composeLaneChangeManeuverMessage(), approaching_emergency_vehicle_plugin::ApproachingEmergencyVehiclePlugin::composeLaneChangeManeuverMessage(), route_following_plugin::RouteFollowingPlugin::composeLaneFollowingManeuverMessage(), approaching_emergency_vehicle_plugin::ApproachingEmergencyVehiclePlugin::composeLaneFollowingManeuverMessage(), stop_and_dwell_strategic_plugin::StopAndDwellStrategicPlugin::composeLaneFollowingManeuverMessage(), sci_strategic_plugin::SCIStrategicPlugin::composeLaneFollowingManeuverMessage(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::composeManeuverMessage(), plan_delegator::PlanDelegator::composePlanTrajectoryRequest(), sci_strategic_plugin::SCIStrategicPlugin::composeStopAndWaitManeuverMessage(), stop_and_dwell_strategic_plugin::StopAndDwellStrategicPlugin::composeStopAndWaitManeuverMessage(), lci_strategic_plugin::LCIStrategicPlugin::composeStopAndWaitManeuverMessage(), route_following_plugin::RouteFollowingPlugin::composeStopAndWaitManeuverMessage(), approaching_emergency_vehicle_plugin::ApproachingEmergencyVehiclePlugin::composeStopAndWaitManeuverMessage(), carma_wm_ctrl::WMBroadcaster::composeTCRStatus(), lci_strategic_plugin::LCIStrategicPlugin::composeTrajectorySmoothingManeuverMessage(), carma_wm_ctrl::WMBroadcaster::controlRequestFromRoute(), trajectory_follower_wrapper::TrajectoryFollowerWrapperNode::convert_cmd(), pure_pursuit_wrapper::PurePursuitWrapperNode::convert_cmd(), carma_wm::SignalizedIntersectionManager::convertLaneToLaneletId(), basic_autonomy::waypoint_generation::create_lanechange_geometry(), cooperative_lanechange::CooperativeLaneChangePlugin::create_mobility_request(), carma_cooperative_perception::MultipleObjectTrackerNode::execute_pipeline(), object_visualizer::Node::external_objects_callback(), carma_wm::SignalizedIntersectionManager::extract_signal_states_from_movement_state(), lci_strategic_plugin::LCIStrategicPlugin::extractInitialState(), sci_strategic_plugin::SCIStrategicPlugin::extractInitialState(), stop_and_dwell_strategic_plugin::StopAndDwellStrategicPlugin::extractInitialState(), yield_plugin::YieldPlugin::generate_JMT_trajectory(), arbitrator::TreePlanner::generate_plan(), approaching_emergency_vehicle_plugin::ApproachingEmergencyVehiclePlugin::generateApproachingErvStatusMessage(), lci_strategic_plugin::LCIStrategicPlugin::generateMobilityOperation(), sci_strategic_plugin::SCIStrategicPlugin::generateMobilityOperation(), light_controlled_intersection_tactical_plugin::LightControlledIntersectionTacticalPlugin::generateNewTrajectory(), carma_wm_ctrl::WMBroadcaster::geofenceCallback(), yield_plugin::YieldPlugin::get_collision(), yield_plugin::YieldPlugin::get_collision_time(), lci_strategic_plugin::LCIStrategicPlugin::get_eet_or_tbd(), lci_strategic_plugin::LCIStrategicPlugin::get_final_entry_time_and_conditions(), lci_strategic_plugin::LCIStrategicPlugin::get_nearest_green_entry_time(), yield_plugin::YieldPlugin::get_predicted_velocity_at_time(), lci_strategic_plugin::LCIStrategicPlugin::get_ts_case(), carma_wm::IndexedDistanceMap::getElementIndexByDistance(), plan_delegator::PlanDelegator::getLaneChangeInformation(), lci_strategic_plugin::LCIStrategicPlugin::getLaneletsBetweenWithException(), sci_strategic_plugin::SCIStrategicPlugin::getLaneletsBetweenWithException(), stop_and_dwell_strategic_plugin::StopAndDwellStrategicPlugin::getLaneletsBetweenWithException(), carma_wm::SignalizedIntersectionManager::getTrafficSignal(), carma_wm::SignalizedIntersectionManager::getTrafficSignalId(), lci_strategic_plugin::LCIStrategicPlugin::handleFailureCaseHelper(), lci_strategic_plugin::LCIStrategicPlugin::handleGreenSignalScenario(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::is_lanechange_possible(), yield_plugin::YieldPlugin::is_object_behind_vehicle(), basic_autonomy::waypoint_generation::is_valid_yield_plan(), plan_delegator::PlanDelegator::isManeuverExpired(), light_controlled_intersection_tactical_plugin::LightControlledIntersectionTacticalPlugin::logDebugInfoAboutPreviousTrajectory(), make_detection(), carma_wm::SignalizedIntersectionManager::min_end_time_converter_minute_of_year(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::mob_op_cb_leader(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::mob_op_cb_preparetojoin(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::mob_req_cb_leadwithoperation(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::mob_resp_cb_preparetojoin(), carma_wm::query::nonConnectedAdjacentLeft(), route::RouteStateWorker::onRouteEvent(), intersection_transit_maneuvering::operator<<(), route_following_plugin::RouteFollowingPlugin::plan_maneuvers_callback(), inlanecruising_plugin::InLaneCruisingPlugin::plan_trajectory_callback(), yield_plugin::YieldPlugin::plan_trajectory_callback(), stop_controlled_intersection_tactical_plugin::StopControlledIntersectionTacticalPlugin::plan_trajectory_callback(), platooning_tactical_plugin::PlatooningTacticalPlugin::plan_trajectory_cb(), stop_and_wait_plugin::StopandWait::plan_trajectory_cb(), light_controlled_intersection_tactical_plugin::LightControlledIntersectionTacticalPlugin::planTrajectorySmoothing(), lci_strategic_plugin::LCIStrategicPlugin::planWhenAPPROACHING(), lci_strategic_plugin::LCIStrategicPlugin::planWhenWAITING(), carma_wm::CARMAWorldModel::pointFromRouteTrackPos(), lci_strategic_plugin::LCIStrategicPlugin::print_params(), project_to_utm(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::run_candidate_follower(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::run_leader_aborting(), platooning_strategic_ihp::PlatooningStrategicIHPPlugin::run_prepare_to_join(), boost::serialization::save(), plan_delegator::anonymous_namespace{plan_delegator.cpp}::setManeuverEndingLaneletId(), route_following_plugin::anonymous_namespace{route_following_plugin.cpp}::setManeuverLaneletIds(), plan_delegator::anonymous_namespace{plan_delegator.cpp}::setManeuverStartingLaneletId(), carma_wm_ctrl::GeofenceScheduler::startGeofenceCallback(), to_detection_list_msg(), to_string(), transform_from_map_to_utm(), lci_strategic_plugin::LCIStrategicPlugin::ts_case1(), lci_strategic_plugin::LCIStrategicPlugin::ts_case2(), lci_strategic_plugin::LCIStrategicPlugin::ts_case3(), lci_strategic_plugin::LCIStrategicPlugin::ts_case4(), lci_strategic_plugin::LCIStrategicPlugin::ts_case6(), lci_strategic_plugin::LCIStrategicPlugin::ts_case7(), plan_delegator::PlanDelegator::updateManeuverParameters(), and lci_strategic_plugin::LCIStrategicPlugin::validLightState().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ to_time_msg()

auto carma_cooperative_perception::to_time_msg ( const DDateTime d_date_time,
bool  is_simulation 
) -> builtin_interfaces::msg::Time

Definition at line 61 of file msg_conversion.cpp.

62{
63 // Convert DDateTime to builtin_interfaces::msg::Time
64 builtin_interfaces::msg::Time msg;
65 if (!is_simulation) {
66 // Create a tm structure to hold the date and time components
67 std::tm timeinfo = {};
68
69 // Year
70 if (d_date_time.year){
71 if(remove_units(d_date_time.year.value()) >= 1970){
72 // std::tm is counted since 1900
73 timeinfo.tm_year = static_cast<int>(remove_units(d_date_time.year.value())) - 1900;
74 }
75 else{
76 throw std::invalid_argument(
77 "Year must be greater than 1970 for live date/time conversion");
78 }
79 }
80
81 // Month
82 if (d_date_time.month && static_cast<int>(d_date_time.month.value().get_value()) != 0)
83 {
84 // std::tm is counted from 0 to 11, J2735 is counted from 1 to 12
85 timeinfo.tm_mon = static_cast<int>(d_date_time.month.value().get_value()) - 1;
86 }
87
88 // Day
89 if (d_date_time.day && static_cast<int>(d_date_time.day.value()) != 0)
90 {
91 // Day is counted from 1 to 31 in both std::tm and J2735
92 timeinfo.tm_mday = static_cast<int>(d_date_time.day.value());
93 }
94 else{
95 timeinfo.tm_mday = 1; // Default to 1 if day is not provided as C++ initializes to 0
96 }
97
98 // Hour
99 if (d_date_time.hour && static_cast<int>(d_date_time.hour.value()) != 31)
100 {
101 // Hour is counted from 0 to 23 in both std::tm and J2735
102 timeinfo.tm_hour = static_cast<int>(d_date_time.hour.value());
103 }
104
105 // Minute
106 if (d_date_time.minute && static_cast<int>(d_date_time.minute.value()) != 60)
107 {
108 // Minute is counted from 0 to 59 in both std::tm and J2735
109 timeinfo.tm_min = static_cast<int>(d_date_time.minute.value());
110 }
111 // Set seconds field (which actually uses ms in j2735) to 0
112 // for now and add milliseconds later
113 timeinfo.tm_sec = 0;
114
115 std::time_t timeT;
116
117 if (d_date_time.time_zone_offset)
118 {
119 timeinfo.tm_gmtoff = static_cast<int>(d_date_time.time_zone_offset.value());
120 timeT = std::mktime(&timeinfo);
121 }
122 else
123 {
124 // Get the current timezone from the system
125 // Use tzset() to initialize timezone data from system
126 tzset();
127
128 // Get current timestamp to determine DST status
129 // NOTE: If the system is running in a docker container (which it mostly is),
130 // the timezone is by default GMT unless otherwise set. Just a caution.
131 std::time_t currentTime = std::time(nullptr);
132 std::tm* localTimeInfo = std::localtime(&currentTime);
133
134 long timezone_offset = localTimeInfo->tm_gmtoff;
135
136 timeinfo.tm_gmtoff = timezone_offset;
137 timeinfo.tm_isdst = localTimeInfo->tm_isdst;
138
139 // Convert to time_t
140 timeT = std::mktime(&timeinfo);
141 }
142
143 // Convert time_t to system_clock::time_point
144 auto timePoint = std::chrono::system_clock::from_time_t(timeT);
145
146 // Add milliseconds
147 int milliseconds = 0;
148 if (d_date_time.second)
149 {
150 milliseconds = static_cast<int>(d_date_time.second.value());
151 }
152 timePoint += std::chrono::milliseconds(milliseconds);
153
154 // Extract seconds and nanoseconds since epoch
155 auto duration = timePoint.time_since_epoch();
156 auto seconds = std::chrono::duration_cast<std::chrono::seconds>(duration);
157 auto nanoseconds = std::chrono::duration_cast<std::chrono::nanoseconds>(duration - seconds);
158
159 msg.sec = static_cast<int32_t>(seconds.count());
160 msg.nanosec = static_cast<uint32_t>(nanoseconds.count());
161
162 return msg;
163 }
164
165 // if simulation, we ignore the date, month, year etc because the simulation won't be that long
166 double seconds;
167 const auto fractional_secs{std::modf(
168 remove_units(units::time::second_t{d_date_time.hour.value_or(units::time::second_t{0.0})}) +
169 remove_units(units::time::second_t{d_date_time.minute.value_or(units::time::second_t{0.0})}) +
170 remove_units(units::time::second_t{d_date_time.second.value_or(units::time::second_t{0.0})}),
171 &seconds)};
172
173 msg.sec = static_cast<std::int32_t>(seconds);
174 msg.nanosec = static_cast<std::int32_t>(fractional_secs * 1e9);
175
176 return msg;
177}
std::optional< units::time::millisecond_t > second
Definition: j2735_types.hpp:43
std::optional< units::time::hour_t > hour
Definition: j2735_types.hpp:41
std::optional< units::time::day_t > day
Definition: j2735_types.hpp:40
std::optional< units::time::minute_t > minute
Definition: j2735_types.hpp:42
std::optional< units::time::year_t > year
Definition: j2735_types.hpp:38
std::optional< units::time::minute_t > time_zone_offset
Definition: j2735_types.hpp:44

References remove_units().

Referenced by to_detection_list_msg().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ transform_from_map_to_utm()

auto carma_cooperative_perception::transform_from_map_to_utm ( carma_cooperative_perception_interfaces::msg::DetectionList  detection_list,
const std::string &  map_origin 
) -> carma_cooperative_perception_interfaces::msg::DetectionList

Definition at line 27 of file external_object_list_to_detection_list_component.cpp.

30{
31 gsl::owner<PJ_CONTEXT *> context = proj_context_create();
32 proj_log_level(context, PJ_LOG_NONE);
33
34 if (context == nullptr) {
35 const std::string error_string{proj_errno_string(proj_context_errno(context))};
36 throw std::invalid_argument("Could not create PROJ context: " + error_string + '.');
37 }
38
39 gsl::owner<PJ *> map_transformation = proj_create(context, map_origin.c_str());
40
41 if (map_transformation == nullptr) {
42 const std::string error_string{proj_errno_string(proj_context_errno(context))};
43 throw std::invalid_argument(
44 "Could not create PROJ transform to origin '" + map_origin + "': " + error_string + '.');
45 }
46
47 std::vector<carma_cooperative_perception_interfaces::msg::Detection> new_detections;
48 for (auto detection : detection_list.detections) {
49 // Coordinate order is easting (meters), northing (meters)
50 const auto position_planar{
51 proj_coord(detection.pose.pose.position.x, detection.pose.pose.position.y, 0, 0)};
52 const auto proj_inverse{proj_trans(map_transformation, PJ_DIRECTION::PJ_INV, position_planar)};
53 const Wgs84Coordinate position_wgs84{
54 units::angle::radian_t{proj_inverse.lp.phi}, units::angle::radian_t{proj_inverse.lp.lam},
55 units::length::meter_t{detection.pose.pose.position.z}};
56
57 const auto utm_zone{calculate_utm_zone(position_wgs84)};
58 const auto position_utm{project_to_utm(position_wgs84)};
59
60 detection.header.frame_id = to_string(utm_zone);
61 detection.pose.pose.position.x = remove_units(position_utm.easting);
62 detection.pose.pose.position.y = remove_units(position_utm.northing);
63
64 new_detections.push_back(std::move(detection));
65 }
66
67 std::swap(detection_list.detections, new_detections);
68
69 proj_destroy(map_transformation);
70 proj_context_destroy(context);
71
72 return detection_list;
73}
auto project_to_utm(const Wgs84Coordinate &coordinate) -> UtmCoordinate
Projects a Wgs84Coordinate to its corresponding UTM zone.
Definition: geodetic.cpp:87

References calculate_utm_zone(), project_to_utm(), remove_units(), and to_string().

Here is the call graph for this function:

◆ transform_pose_from_map_to_wgs84()

auto carma_cooperative_perception::transform_pose_from_map_to_wgs84 ( const geometry_msgs::msg::PoseStamped &  source_pose,
const std::shared_ptr< lanelet::projection::LocalFrameProjector > &  map_projection 
) -> carma_v2x_msgs::msg::Position3D

Definition at line 332 of file msg_conversion.cpp.

336{
337 carma_v2x_msgs::msg::Position3D ref_pos;
338 lanelet::BasicPoint3d source_pose_basicpoint{
339 source_pose.pose.position.x, source_pose.pose.position.y, 0.0};
340
341 lanelet::GPSPoint wgs84_ref_pose = map_projection->reverse(source_pose_basicpoint);
342
343 ref_pos.longitude = wgs84_ref_pose.lon;
344 ref_pos.latitude = wgs84_ref_pose.lat;
345 ref_pos.elevation = wgs84_ref_pose.ele;
346 ref_pos.elevation_exists = true;
347
348 return ref_pos;
349}

Referenced by to_sdsm_msg().

Here is the caller graph for this function:

Variable Documentation

◆ April

constexpr Month carma_cooperative_perception::April {4}
inlineconstexpr

Definition at line 234 of file month.hpp.

◆ August

constexpr Month carma_cooperative_perception::August {8}
inlineconstexpr

Definition at line 238 of file month.hpp.

◆ December

constexpr Month carma_cooperative_perception::December {12}
inlineconstexpr

Definition at line 242 of file month.hpp.

◆ February

constexpr Month carma_cooperative_perception::February {2}
inlineconstexpr

Definition at line 232 of file month.hpp.

◆ January

constexpr Month carma_cooperative_perception::January {1}
inlineconstexpr

Definition at line 231 of file month.hpp.

◆ July

constexpr Month carma_cooperative_perception::July {7}
inlineconstexpr

Definition at line 237 of file month.hpp.

◆ June

constexpr Month carma_cooperative_perception::June {6}
inlineconstexpr

Definition at line 236 of file month.hpp.

◆ March

constexpr Month carma_cooperative_perception::March {3}
inlineconstexpr

Definition at line 233 of file month.hpp.

◆ May

constexpr Month carma_cooperative_perception::May {5}
inlineconstexpr

Definition at line 235 of file month.hpp.

◆ November

constexpr Month carma_cooperative_perception::November {11}
inlineconstexpr

Definition at line 241 of file month.hpp.

◆ October

constexpr Month carma_cooperative_perception::October {10}
inlineconstexpr

Definition at line 240 of file month.hpp.

◆ September

constexpr Month carma_cooperative_perception::September {9}
inlineconstexpr

Definition at line 239 of file month.hpp.